Molecular dynamics study of imidazolium ionic liquids and molecular solvents: insights into microstructure and transport phenomena

  • Dmytro Dudariev V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv, 61022, Ukraine https://orcid.org/0000-0002-2556-8036
  • Yaroslav Kolesnik V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv, 61022, Ukraine https://orcid.org/0000-0002-9569-4556
  • Abdenacer Idrissi University of Lille, CNRS UMR 8516 -LASIRe - Laboratoire Avancé de Spectroscopie pour les Interactions la Réactivité et l'environnement, 59000 Lille, France https://orcid.org/0000-0002-6924-6434
  • Oleg Kalugin V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv, 61022, Ukraine https://orcid.org/0000-0003-3273-9259
Keywords: 1-butyl-3-methylimdazolium, ionic liquids, aprotic dipolar solvents, local structure, transport properties, ionic aggregation

Abstract

Binary mixtures composed of room-temperature ionic liquids and aprotic dipolar solvents are widely used in the modern electrochemistry. While these systems exhibit maximum electroconductivity and other changes in diluted solutions, as confirmed by NMR and vibrational spectroscopic data, there is currently no theory that can fully explain these phenomena. In current work twelve mixtures of ionic liquids (ILs), in particular 1-butyl-3-methylimdazolium (C4mim+) with tetrafluoroborate (BF4-), hexafluorophosphate (PF6-), trifluoromethanesulfonate (TFO-) and bis(trifluoromethane)sulfonimide (TFSI-) with molecular solvents such as acetonitrile (AN), propylene carbonate (PC) or gamma butyrolactone (γ-BL) were studied by the molecular dynamics simulation technique. The local structure of the mixtures was studied in the framework of radial distribution functions (RDFs) and running coordination numbers (RCNs) that showed the particular behavior in AN and TFSI- systems. For TFSI- system the presence of two peaks on the RDFs with similar intensities were observed. The mutual arrangement of cation and anion corresponding to observed on the RDFs interatomic distances were investigated: they represent the position when the nitrogen atom of the anion is close to the imidazolium ring and when nitrogen atom of TFSI- not directly interacting with the ring, but instead the oxygen atoms do. The cation-anion coordination numbers changed for mixtures with AN from ~1.2 to ~3.6, for PC – from 0.6 to 3.0 and for γ-BL – from 0.8 to 3.1 with the increasing mole fraction of the ILs. Also, the association analysis was conducted using two different distance criteria. The results showed the formation of large clusters at approximately 0.15, 0.20, and 0.25 IL mole fractions for AN, PC, and γ-BL, respectively, based on the first criterion. However, this criterion tends to overestimate the extent of aggregation. In contrast, the second, stricter criterion indicates that the formation of large aggregates begins at IL mole fractions similar to where the experimental conductivity curves reach their maximum. To analyze the transport properties the diffusion coefficients of all the components and shear viscosity for all binary mixtures were obtained. The diffusion coefficients show good agreement with experimental data.

Downloads

Download data is not yet available.

References

Dorbritz S., Ruth W., Kragl U. Investigation on aggregate formation of ionic liquids. Advanced Synthesis & Catalysis 2005, 347 (9), 1273-1279. https://doi.org/10.1002/adsc.200404352

Andanson J. M., Traïkia M., Husson P. Ionic association and interactions in aqueous methylsulfate alkyl-imidazolium-based ionic liquids. The Journal of Chemical Thermodynamics 2014, 77 214-221. https://doi.org/10.1016/j.jct.2014.01.031

Bešter-Rogač M., Stoppa A., Hunger J., Hefter G., Buchner R. Association of ionic liquids in solution: A combined dielectric and conductivity study of [bmim][cl] in water and in acetonitrile. Physical Chemistry Chemical Physics 2011, 13 (39), 17588-17588. https://doi.org/10.1039/C1CP21371G

Jan R., Rather G. M., Bhat M. A. Association of ionic liquids in solution: Conductivity studies of [bmim][cl] and [bmim][pf6] in binary mixtures of acetonitrile + methanol. Journal of Solution Chemistry 2013, 42 (4), 738-745. https://doi.org/10.1007/s10953-013-9999-4

Hou J., Zhang Z., Madsen L. A. Cation/anion associations in ionic liquids modulated by hydration and ionic medium. Journal of Physical Chemistry B 2011, 115 (16), 4576-4582. https://doi.org/10.1021/jp1110899

Boruń A. Conductance and ionic association of selected imidazolium ionic liquids in various solvents: A review. Journal of Molecular Liquids 2019, 276 214-224. https://doi.org/10.1016/j.molliq.2018.11.140

Lovelock K. R. J. Quantifying intermolecular interactions of ionic liquids using cohesive energy densities. Royal Society Open Science 2017, 4 (12), 171223-171223. https://doi.org/10.1098/rsos.171223

Fumino K., Reimann S., Ludwig R. Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces. Physical Chemistry Chemical Physics 2014, 16 (40), 21903-21929. https://doi.org/10.1039/C4CP01476F

Anderson J. L., Ding J., Welton T., Armstrong D. W. Characterizing ionic liquids on the basis of multiple solvation interactions. Journal of the American Chemical Society 2002, 124 (47), 14247-14254. https://doi.org/10.1021/ja028156h

Angenendt K., Johansson P. Ionic liquid structures from large density functional theory calculations using mindless configurations. The Journal of Physical Chemistry C 2010, 114 (48), 20577-20582. https://doi.org/10.1021/jp104961r

Xiong Z., Gao J., Zhang D., Liu C. Hydrogen bond network of 1-alkyl-3-methylimidazolium ionic liquids: A network theory analysis. Journal of Theoretical and Computational Chemistry 2012, 11 (3), 587-598. https://doi.org/10.1142/S0219633612500381

Niemann T., Strate A., Ludwig R., Zeng H. J., Menges F. S., Johnson M. A. Cooperatively enhanced hydrogen bonds in ionic liquids: Closing the loop with molecular mimics of hydroxy-functionalized cations. Physical Chemistry Chemical Physics 2019, 21 (33), 18092-18098. https://doi.org/10.1039/C9CP03300A

Le Donne A., Adenusi H., Porcelli F., Bodo E. Hydrogen bonding as a clustering agent in protic ionic liquids: Like-charge vs opposite-charge dimer formation. ACS Omega 2018, 3 (9), 10589-10600. https://doi.org/10.1021/acsomega.8b01615

Fumino K., Wulf A., Ludwig R. Hydrogen bonding in protic ionic liquids: Reminiscent of water. Angewandte Chemie International Edition 2009, 48 (17), 3184-3186. https://doi.org/10.1002/anie.200806224

Brela M. Z., Kubisiak P., Eilmes A. Understanding the structure of the hydrogen bond network and its influence on vibrational spectra in a prototypical aprotic ionic liquid. Journal of Physical Chemistry B 2018, 122 (41), 9527-9537. https://doi.org/10.1021/acs.jpcb.8b05839

Avent A. G., Chaloner P. A., Day M. P., Seddon K. R., Welton T. Evidence for hydrogen bonding in solutions of 1-ethyl-3-methylimidazolium halides, and its implications for room-temperature halogenoaluminate(iii) ionic liquids. Journal of the Chemical Society, Dalton Transactions 1994, (23), 3405-3405. https://doi.org/10.1039/DT9940003405

Marekha B. A., Kalugin O. N., Bria M., Idrissi A. Probing structural patterns of ion association and solvation in mixtures of imidazolium ionic liquids with acetonitrile by means of relative 1h and 13c nmr chemical shifts. Physical Chemistry Chemical Physics 2015, 17 (35), 23183-23194. https://doi.org/10.1039/C5CP02748A

Bester-Rogac M., Stoppa A., Buchner R. Ion association of imidazolium ionic liquids in acetonitrile. J Phys Chem B 2014, 118 (5), 1426-35. https://doi.org/10.1021/jp412344a

Yalcin D., Drummond C. J., Greaves T. L. Solvation properties of protic ionic liquids and molecular solvents. Physical Chemistry Chemical Physics 2019, 22 (1), 114-128. https://doi.org/10.1039/C9CP05711K

Sadeghi R., Ebrahimi N. Ionic association and solvation of the ionic liquid 1-hexyl-3- methylimidazolium chloride in molecular solvents revealed by vapor pressure osmometry, conductometry, volumetry, and acoustic measurements. Journal of Physical Chemistry B 2011, 115 (45), 13227-13240. https://doi.org/10.1021/jp2055188

Dupont J. On the solid, liquid and solution structural organization of imidazolium ionic liquids. Journal of the Brazilian Chemical Society 2004, 15 (3), 341-350. https://doi.org/10.1590/S0103-50532004000300002

Zhao Y., Gao S., Wang J., Tang J. Aggregation of ionic liquids [cnmim]br (n = 4, 6, 8, 10, 12) in d2o: A nmr study. Journal of Physical Chemistry B 2008, 112 (7), 2031-2039. https://doi.org/10.1021/jp076467e

Tokuda H., Baek S. J., Watanabe M. Room-temperature ionic liquid-organic solvent mixtures: Conductivity and ionic association. Electrochemistry 2005, 73 (8), 620-622. https://doi.org/10.5796/electrochemistry.73.620

Richardson P. M., Voice A. M., Ward I. M. Pulsed-field gradient nmr self diffusion and ionic conductivity measurements for liquid electrolytes containing libf4 and propylene carbonate. Electrochimica Acta 2014, 130 606-618. https://doi.org/10.1016/j.electacta.2014.03.072

Burrell G. L., Burgar I. M., Gong Q., Dunlop N. F., Separovic F. Nmr relaxation and self-diffusion study at high and low magnetic fields of ionic association in protic ionic liquids. Journal of Physical Chemistry B 2010, 114 (35), 11436-11443. https://doi.org/10.1021/jp105087n

Kundu K., Chandra G. K., Umapathy S., Kiefer J. Spectroscopic and computational insights into the ion-solvent interactions in hydrated aprotic and protic ionic liquids. Physical Chemistry Chemical Physics 2019, 21 (37), 20791-20804. https://doi.org/10.1039/C9CP03670A

Danten Y., Cabaço M. I., Besnard M. Interaction of water diluted in 1-butyl-3-methyl imidazolium ionic liquids by vibrational spectroscopy modeling. Journal of Molecular Liquids 2010, 153 (1), 57-66. https://doi.org/10.1016/j.molliq.2009.07.001

Marcus Y., Hefter G. Ion pairing. Chemical Reviews 2006, 106 (11), 4585-4621. https://doi.org/10.1021/cr040087x

Shimomura T., Takamuku T., Yamaguchi T. Clusters of imidazolium-based ionic liquid in benzene solutions. The Journal of Physical Chemistry B 2011, 115 (26), 8518-8527. https://doi.org/10.1021/jp203422z

Russina O., Sferrazza A., Caminiti R., Triolo A. Amphiphile meets amphiphile: Beyond the polar–apolar dualism in ionic liquid/alcohol mixtures. The Journal of Physical Chemistry Letters 2014, 5 (10), 1738-1742. https://doi.org/10.1021/jz500743v

Marekha B. A., Koverga V. A., Chesneau E., Kalugin O. N., Takamuku T., Jedlovszky P., Idrissi A. Local structure in terms of nearest-neighbor approach in 1-butyl-3-methylimidazolium-based ionic liquids: Md simulations. The Journal of Physical Chemistry B 2016, 120 (22), 5029-5041. https://doi.org/10.1021/acs.jpcb.6b04066

Zahn S., Brehm M., Brüssel M., Hollóczki O., Kohagen M., Lehmann S., Malberg F., Pensado A. S., Schöppke M., Weber H., et al. Understanding ionic liquids from theoretical methods. Journal of Molecular Liquids 2014, 192 71-76. https://doi.org/10.1016/j.molliq.2013.08.015

Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindah E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1-2 19-25. https://doi.org/10.1016/j.softx.2015.06.001

Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. The Journal of Chemical Physics 2007, 126 (1), 014101. https://doi.org/10.1063/1.2408420

Berendsen H. J. C., Postma J. P. M., Van Gunsteren W. F., Dinola A., Haak J. R. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics 1998, 81 (8), 3684-3684. https://doi.org/10.1063/1.448118

Essmann U., Perera L., Berkowitz M. L., Darden T., Lee H., Pedersen L. G. A smooth particle mesh ewald method. The Journal of Chemical Physics 1998, 103 (19), 8577-8577. https://doi.org/10.1063/1.470117

Allen P., Tildesley D. J. Computer simulation of liquids. Clarendon Press: Oxford, 1987. https://doi.org/10.1093/oso/9780198803195.001.0001

Mondal A., Balasubramanian S. Quantitative prediction of physical properties of imidazolium based room temperature ionic liquids through determination of condensed phase site charges: A refined force field. Journal of Physical Chemistry B 2014, 118 (12), 3409-3422. https://doi.org/10.1021/jp500296x

Mondal A., Balasubramanian S. A refined all-atom potential for imidazolium-based room temperature ionic liquids: Acetate, dicyanamide, and thiocyanate anions. Journal of Physical Chemistry B 2015, 119 (34), 11041-11051. https://doi.org/10.1021/acs.jpcb.5b02272

Koverga V. A., Korsun O. M., Kalugin O. N., Marekha B. A., Idrissi A. A new potential model for acetonitrile: Insight into the local structure organization. Journal of Molecular Liquids 2017, 233 251-261. https://doi.org/10.1016/j.molliq.2017.03.025

Koverga V. A., Voroshylova I. V., Smortsova Y., Miannay F. A., Cordeiro M. N. D. S., Idrissi A., Kalugin O. N. Local structure and hydrogen bonding in liquid γ-butyrolactone and propylene carbonate: A molecular dynamics simulation. Journal of Molecular Liquids 2019, 287 110912-110912. https://doi.org/10.1016/j.molliq.2019.110912

Canongia Lopes J. N., Deschamps J., Pádua A. A. H. Modeling ionic liquids using a systematic all-atom force field. The Journal of Physical Chemistry B 2004, 108 (6), 2038-2047. https://doi.org/10.1021/jp0362133

Canongia Lopes J. N., Pádua A. A. H. Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. The Journal of Physical Chemistry B 2004, 108 (43), 16893-16898. https://doi.org/10.1021/jp0476545

Canongia Lopes J. N., Pádua A. A. H. Molecular force field for ionic liquids iii: Imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions. The Journal of Physical Chemistry B 2006, 110 (39), 19586-19592. https://doi.org/10.1021/jp063901o

Ryckaert J. P., Bellemans A. Molecular dynamics of liquid n-butane near its boiling point. Chemical Physics Letters 1975, 30 (1), 123-125. https://doi.org/10.1016/0009-2614(75)85513-8

Bernardes C. E. S., Minas da Piedade M. E., Canongia Lopes J. N. The structure of aqueous solutions of a hydrophilic ionic liquid: The full concentration range of 1-ethyl-3-methylimidazolium ethylsulfate and water. The Journal of Physical Chemistry B 2011, 115 (9), 2067-2074. https://doi.org/10.1021/jp1113202

Hanke C. G., Lynden-Bell R. M. A simulation study of water−dialkylimidazolium ionic liquid mixtures. The Journal of Physical Chemistry B 2003, 107 (39), 10873-10878. https://doi.org/10.1021/jp034221d

Marekha B. A., Kalugin O. N., Idrissi A. Non-covalent interactions in ionic liquid ion pairs and ion pair dimers: A quantum chemical calculation analysis. Physical Chemistry Chemical Physics 2015, 17 (26), 16846-16857. https://doi.org/10.1039/C5CP02197A

Bernardes C. E. S. Aggregates: Finding structures in simulation results of solutions. J. Comput. Chem. 2017, 38 (10), 753-765. https://doi.org/10.1002/jcc.24735

Hess B. Determining the shear viscosity of model liquids from molecular dynamics simulations. The Journal of Chemical Physics 2002, 116 (1), 209-209. https://doi.org/10.1063/1.1421362

Macchieraldo R., Esser L., Elfgen R., Voepel P., Zahn S., Smarsly B. M., Kirchner B. Hydrophilic ionic liquid mixtures of weakly and strongly coordinating anions with and without water. ACS Omega 2018, 3 (8), 8567-8582. https://doi.org/10.1021/acsomega.8b00995

Weber H., Hollóczki O., Pensado A. S., Kirchner B. Side chain fluorination and anion effect on the structure of 1-butyl-3-methylimidazolium ionic liquids. The Journal of Chemical Physics 2013, 139 (8), 084502-084502. https://doi.org/10.1063/1.4818540

Doherty B., Zhong X., Gathiaka S., Li B., Acevedo O. Revisiting opls force field parameters for ionic liquid simulations. Journal of Chemical Theory and Computation 2017, 13 (12), 6131-6145. https://doi.org/10.1021/acs.jctc.7b00520

Humphrey W., Dalke A., Schulten K. Vmd: Visual molecular dynamics. Journal of Molecular Graphics 1996, 14 (1), 33-38. https://doi.org/10.1016/0263-7855(96)00018-5

Kalugin O. N., Voroshylova I. V., Riabchunova A. V., Lukinova E. V., Chaban V. V. Conductometric study of binary systems based on ionic liquids and acetonitrile in a wide concentration range. Electrochimica Acta 2013, 105 188-199. https://doi.org/10.1016/j.electacta.2013.04.140

Vraneš M., Papović S., Tot A., Zec N., Gadžurić S. Density, excess properties, electrical conductivity and viscosity of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide + γ-butyrolactone binary mixtures. The Journal of Chemical Thermodynamics 2014, 76 161-171. https://doi.org/10.1016/j.jct.2014.03.025

Stoppa A., Hunger J., Buchner R. Conductivities of binary mixtures of ionic liquids with polar solvents. Journal of Chemical & Engineering Data 2009, 54 (2), 472-479. https://doi.org/10.1021/je800468h

Fu Y., Cui X., Zhang Y., Feng T., He J., Zhang X., Bai X., Cheng Q. Measurement and correlation of the electrical conductivity of the ionic liquid [bmim][tfsi] in binary organic solvents. Journal of Chemical & Engineering Data 2018, 63 (5), 1180-1189. https://doi.org/10.1021/acs.jced.7b00646

France-Lanord A., Grossman J. C. Correlations from ion pairing and the nernst-einstein equation. Phys Rev Lett 2019, 122 (13), 136001. https://doi.org/10.1103/PhysRevLett.122.136001

Marekha B. A., Kalugin O. N., Bria M., Buchner R., Idrissi A. Translational diffusion in mixtures of imidazolium ils with polar aprotic molecular solvents. The Journal of Physical Chemistry B 2014, 118 (20), 5509-5517. https://doi.org/10.1021/jp501561s

Published
2024-09-19
Cited
How to Cite
Dudariev, D., Kolesnik, Y., Idrissi, A., & Kalugin, O. (2024). Molecular dynamics study of imidazolium ionic liquids and molecular solvents: insights into microstructure and transport phenomena. Kharkiv University Bulletin. Chemical Series, (41), 6–24. https://doi.org/10.26565/2220-637X-2023-41-01