Benchmarking Google DeepMind’s AlphaFold 3 Performance for Protein 3D-Structure Prediction

Keywords: protein folding, enzyme, 3D structure, drug design, artificial intelligence, AlphaFold 3

Abstract

The 3D structure of proteins is directly linked to their function, making its determination crucial for understanding biological processes and addressing issues related to human health and life sciences. Despite the continuous experimental acquisition of new protein structures, there remains a significant gap between the number of protein sequences available and those that have an established experimental high-resolution tertiary structure. Several computational approaches have focused on predicting protein structures using either templates or empirical force field modeling. In recent years, various methods have been combined to address the individual limitations of these approaches, leading to the development of AlphaFold 3 (AF3) by Google DeepMind. AF3 enables prediction of 3D protein structures with high accuracy based on its amino acid sequence. In this study, we benchmarked applicability, performance, and limitations of AF3 for predicting 3D structure of a broad series of proteins, including SARS-CoV-2 coronavirus proteins, other bacterial and viral proteins, as well as some plant enzymes. We found that AlphaFold 3 could capture the overall backbone features of the most examined proteins in terms of small deviation from available X-ray structures. Some minor miss-folding of N- and C-terminal segments were common, which, often, did not affect biological roles of the studied proteins. In cases involving protein dimers or higher-order oligomers, there are notable differences between the predicted AF3 models of a single-chain monomer and their corresponding experimental structures. These discrepancies are particularly evident in regions related to protein dimerization, assembly, and binding interfaces. Ultimately, while capturing the overall fold, predicting the complex structure of the Spike glycoprotein is still beyond the current capabilities of AF3.

Downloads

Download data is not yet available.

References

Dill K. A., Ozkan S. B., Weikl T. R., Chodera J. D., Voelz V. A. The protein folding problem: When will it be solved? Curr Opin Struct Biol 2007, 17 (3), 342-346. https://doi.org/10.1016/j.sbi.2007.06.001

Nassar R., Dignon G. L., Razban R. M., Dill K. A. The protein folding problem: The role of theory. J. Mol. Biol. 2021, 433 (20), 167126. https://doi.org/10.1016/j.jmb.2021.167126

Weller J. A., Rohs R. Structure-based drug design with a deep hierarchical generative model. J. Chem. Inf. Model. 2024, 64 (16), 6450-6463. https://doi.org/10.1021/acs.jcim.4c01193

Chen L., Li Q., Nasif K. F., Xie Y., Deng B., Niu S., Pouriyeh S., Dai Z., Chen J., Xie C. Y. AI-driven deep learning techniques in protein structure prediction. Int. J. Mol. Sci. 2024, 25 (15), 8426. https://doi.org/10.3390/ijms25158426

Bryant P., Pozzati G., Elofsson A. Improved prediction of protein-protein interactions using AlphaFold2. Nat. Commun. 2022, 13 (1), 1265. https://doi.org/10.1038/s41467-022-28865-w

Huang P.-S., Boyken S. E., Baker D. The coming of age of de novo protein design. Nature 2016, 537 (7620), 320-327. https://doi.org/10.1038/nature19946

Zonta F., Pantano S. From sequence to mechanobiology? Promises and challenges for AlphaFold 3. Mechanobiol. Med. 2024, 2 (3), 100083. doi: https://doi.org/10.1016/j.mbm.2024.100083

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S. A. A., Ballard A. J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A. W., Kavukcuoglu K., Kohli P., Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596 (7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2

Nunes-Alves A., Merz K. AlphaFold2 in molecular discovery. J. Chem. Inf. Model. 2023, 63 (19), 5947-5949. https://doi.org/10.1021/acs.jcim.3c01459

Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A. J., Bambrick J., Bodenstein S. W., Evans D. A., Hung C.-C., O’Neill M., Reiman D., Tunyasuvunakool K., Wu Z., Žemgulytė A., Arvaniti E., Beattie C., Bertolli O., Bridgland A., Cherepanov A., Congreve M., Cowen-Rivers A. I., Cowie A., Figurnov M., Fuchs F. B., Gladman H., Jain R., Khan Y. A., Low C. M. R., Perlin K., Potapenko A., Savy P., Singh S., Stecula A., Thillaisundaram A., Tong C., Yakneen S., Zhong E. D., Zielinski M., Žídek A., Bapst V., Kohli P., Jaderberg M., Hassabis D., Jumper J. M. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630 (8016), 493-500. https://doi.org/10.1038/s41586-024-07487-w

McDonnell R. T., Henderson A. N., Elcock A. H. Structure prediction of large RNAs with AlphaFold 3 highlights its capabilities and limitations. J. Mol. Biol. 2024, 436 (22), 168816. https://doi.org/10.1016/j.jmb.2024.168816

Kondo H. X., Takano Y. Structure comparison of heme-binding sites in heme protein predicted by AlphaFold3 and AlphaFold2. Chem. Lett. 2024, 53 (8), upae148. https://doi.org/10.1093/chemle/upae148

He X.-h., Li J.-r., Shen S.-y., Xu H. E. AlphaFold3 versus experimental structures: Assessment of the accuracy in ligand-bound G protein-coupled receptors. Acta Pharm. Sinica 2024, doi: 10.1038/s41401-024-01429-y. https://doi.org/10.1038/s41401-024-01429-y

Lynch M. L., Snell E. H., Bowman S. E. J. Structural biology in the time of COVID-19: Perspectives on methods and milestones. IUCrJ 2021, 8 335-341. https://doi.org/10.1107/S2052252521003948

Lubin J. H., Zardecki C., Dolan E. M., Lu C., Shen Z., Dutta S., Westbrook J. D., Hudson B. P., Goodsell D. S., Williams J. K., Voigt M., Sarma V., Xie L., Venkatachalam T., Arnold S., Alfaro Alvarado L. H., Catalfano K., Khan A., McCarthy E., Staggers S., Tinsley B., Trudeau A., Singh J., Whitmore L., Zheng H., Benedek M., Currier J., Dresel M., Duvvuru A., Dyszel B., Fingar E., Hennen E. M., Kirsch M., Khan A. A., Labrie-Cleary C., Laporte S., Lenkeit E., Martin K., Orellana M., Ortiz-Alvarez de la Campa M., Paredes I., Wheeler B., Rupert A., Sam A., See K., Soto Zapata S., Craig P. A., Hall B. L., Jiang J., Koeppe J. R., Mills S. A., Pikaart M. J., Roberts R., Bromberg Y., Hoyer J. S., Duffy S., Tischfield J., Ruiz F. X., Arnold E., Baum J., Sandberg J., Brannigan G., Khare S. D., Burley S. K. Evolution of the SARS-CoV-2 proteome in three dimensions (3D) during the first 6 months of the COVID-19 pandemic. Proteins: Struct., Funct., Bioinf. 2022, 90 (5), 1054-1080. https://doi.org/10.1002/prot.26250

Yang Q., Jian X., Syed A. A. S., Fahira A., Zheng C., Zhu Z., Wang K., Zhang J., Wen Y., Li Z., Pan D., Lu T., Wang Z., Shi Y. Structural comparison and drug screening of spike proteins of ten SARS-CoV-2 variants. Research 2022, 2022, 9781758. https://doi.org/10.34133/2022/9781758

Parigger L., Krassnigg A., Grabuschnig S., Gruber K., Steinkellner G., Gruber Christian C. AI-assisted structural consensus-proteome prediction of human monkeypox viruses isolated within a year after the 2022 multi-country outbreak. Microbiology Spectrum 2023, 11 (6), e02315-23. https://doi.org/ 10.1128/spectrum.02315-23

Lubin J. H., Martinusen S. G., Zardecki C., Olivas C., Bacorn M., Balogun M., Slaton E. W., Wu A. W., Sakeer S., Hudson B. P., Denard C. A., Burley S. K., Khare S. D. A comprehensive survey of coronaviral main protease active site diversity in 3D: Identifying and analyzing drug discovery targets in search of broad specificity inhibitors for the next coronavirus pandemic. bioRxiv 2023, 2023.01.30.526101. https://doi.org/10.1101/2023.01.30.526101

Jin Z., Du X., Xu Y., Deng Y., Liu M., Zhao Y., Zhang B., Li X., Zhang L., Peng C., Duan Y., Zhang L., Shi Y., Ji Y., Liu Y., Xiao G., Liu Z., Liu J., Zheng Z., Jiang H., Li S., Xu W., Jin M., Wang Y., Shen Y., Li Z., Wang J., Zhan P., Wang X., Yang M., Zhang X., Zhao S., Zhuang X., Zhang H., Zhao J., Shen X., Yang X., Ding Y., Xu Z., Li X. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Nature 2020, 582 (7811), 289-293. https://doi.org/10.1038/s41586-020-2223-y

Rut W., Lv Z., Zmudzinski M., Patchett S., Nayak D., Snipas S. J., El Oualid F., Huang T. T., Bekes M., Drag M., Olsen S. K. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti–COVID-19 drug design. Sci. Adv. 2020, 6 (42), eabd4596. https://doi.org/10.1126/sciadv.abd4596

Yin W., Mao C., Luan X., Shen D.-D., Shen Q., Su H., Wang X., Zhou F., Zhao W., Gao M., Chang S., Xie Y.-C., Tian G., Jiang H.-W., Tao S.-C., Shen J., Jiang Y., Jiang H., Xu Y., Zhang S., Zhang Y., Xu H. E. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 2020, 368 (6498), 1499. https://doi.org/10.1126/science.abc1560

Tan B., Joyce R., Tan H., Hu Y., Wang J. SARS-CoV-2 main protease drug design, assay development, and drug resistance studies. Acc. Chem. Res. 2023, 56 (2), 157-168. https://doi.org/10.1021/acs.accounts.2c00735

Yevsieieva L. V., Lohachova K. O., Kyrychenko A., Kovalenko S. M., Ivanov V. V., Kalugin O. N. Main and papain-like proteases as prospective targets for pharmacological treatment of coronavirus SARS-CoV-2. RSC Adv. 2023, 13 (50), 35500–35524. https://doi.org/10.1039/d3ra06479d

Hu Q., Xiong Y., Zhu G.-H., Zhang Y.-N., Zhang Y.-W., Huang P., Ge G.-B. The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. MedComm 2022, 3 (3), e151. doi: https://doi.org/10.1002/mco2.151

Lohachova K. O., Sviatenko A. S., Kyrychenko A., Ivanov V. V., Langer T., Kovalenko S. M., Kalugin O. N. Computer-aided drug design of novel nirmatrelvir analogs inhibiting main protease of coronavirus SARS-CoV-2. J. Appl. Pharm. Sci. 2024, 14 (5), 232-239. https://doi.org/10.7324/JAPS.2024.158114

Zagórska A., Czopek A., Fryc M., Jończyk J. Inhibitors of SARS-CoV-2 main protease (Mpro) as anti-coronavirus agents. Biomolecules. 2024, 14 (7), 797. https://doi.org/10.3390/biom14070797

Yang Y., Luo Y.-D., Zhang C.-B., Xiang Y., Bai X.-Y., Zhang D., Fu Z.-Y., Hao R.-B., Liu X.-L. Progress in research on inhibitors targeting SARS-CoV-2 main protease (Mpro). ACS Omega 2024, 9 (32), 34196-34219. https://doi.org/10.1021/acsomega.4c03023

Xiao Y.-Q., Long J., Zhang S.-S., Zhu Y.-Y., Gu S.-X. Non-peptidic inhibitors targeting SARS-CoV-2 main protease: A review. Bioorg. Chem. 2024, 147 107380. doi: https://doi.org/10.1016/j.bioorg.2024.107380

Yevsieieva L., Trostianko P., Kyrychenko A., Ivanov V., Kovalenko S., Kalugin O. Design of non-covalent dual-acting inhibitors for proteases Mpro and PLpro of coronavirus SARS-CoV-2 through evolutionary library generation, pharmacophore profile matching, and molecular docking calculations. Sci. Rise. Pharm. Sci. 2024, (6(52)), 15-26. https://doi.org/10.15587/2519-4852.2024.313808

Ullrich S., Nitsche C. SARS-CoV-2 papain-like protease: Structure, function and inhibition. ChemBioChem 2022, 23 (19), e202200327. https://doi.org/10.1002/cbic.202200327

Gao X., Qin B., Chen P., Zhu K., Hou P., Wojdyla J. A., Wang M., Cui S. Crystal structure of SARS-CoV-2 papain-like protease. Acta Pharmac. Sinica B 2021, 11 (1), 237-245. https://doi.org/10.1016/j.apsb.2020.08.014

Osipiuk J., Azizi S.-A., Dvorkin S., Endres M., Jedrzejczak R., Jones K. A., Kang S., Kathayat R. S., Kim Y., Lisnyak V. G., Maki S. L., Nicolaescu V., Taylor C. A., Tesar C., Zhang Y.-A., Zhou Z., Randall G., Michalska K., Snyder S. A., Dickinson B. C., Joachimiak A. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun. 2021, 12 (1), 743. https://doi.org/10.1038/s41467-021-21060-3

Taylor A. J., Amporndanai K., Rietz T. A., Zhao B., Thiruvaipati A., Wei Q., South T. M., Crow M. M., Apakama C., Sensintaffar J. L., Phan J., Lee T., Fesik S. W. Fragment-based screen of SARS-CoV-2 papain-like protease (PLpro). ACS Med. Chem. Lett. 2024, 15 (8), 1351-1357. https://doi.org/10.1021/acsmedchemlett.4c00238

Magwaza N. N., Mushebenge A. G., Ugbaja S. C., Mbatha N. A., Khan R. B., Kumalo H. M. Mechanistic insights into targeting SARS-CoV-2 papain-like protease in the evolution and management of COVID-19. BioChem 2024, 4 (3), 268-299. https://doi.org/10.3390/biochem4030014

Han H., Gracia A. V., Røise J. J., Boike L., Leon K., Schulze-Gahmen U., Stentzel M. R., Bajaj T., Chen D., Li I. C., He M., Behrouzi K., Khodabakhshi Z., Nomura D. K., Mofrad M. R. K., Kumar G. R., Ott M., Murthy N. A covalent inhibitor targeting the papain-like protease from SARS-CoV-2 inhibits viral replication. RSC Adv. 2023, 13 (16), 10636-10641. https://doi.org/10.1039/D3RA00426K

Stasiulewicz A., Maksymiuk A. W., Nguyen M. L., Bełza B., Sulkowska J. I. SARS-CoV-2 papain-like protease potential inhibitors — in silico quantitative assessment. Int. J. Mol. Sci. 2021, 22 (8), 3957. https://doi.org/10.3390/ijms22083957

Shan H., Liu J., Shen J., Dai J., Xu G., Lu K., Han C., Wang Y., Xu X., Tong Y., Xiang H., Ai Z., Zhuang G., Hu J., Zhang Z., Li Y., Pan L., Tan L. Development of potent and selective inhibitors targeting the papain-like protease of SARS-CoV-2. Cell Chem Biol 2021, 28 (6), 855-865.e9. https://doi.org/10.1016/j.chembiol.2021.04.020

Ma C., Sacco M. D., Xia Z., Lambrinidis G., Townsend J. A., Hu Y., Meng X., Szeto T., Ba M., Zhang X., Gongora M., Zhang F., Marty M. T., Xiang Y., Kolocouris A., Chen Y., Wang J. Discovery of SARS-CoV-2 papain-like protease inhibitors through a combination of high-throughput screening and a FlipGFP-based reporter assay. ACS Centrl. Sci. 2021, 7 (7), 1245-1260. https://doi.org/10.1021/acscentsci.1c00519

Huynh T., Cornell W., Luan B. In silico exploration of inhibitors for SARS-CoV-2's papain-like protease. Front. Chem. 2021, 8 624163. https://doi.org/10.3389/fchem.2020.624163

Kakavandi S., Zare I., VaezJalali M., Dadashi M., Azarian M., Akbari A., Ramezani Farani M., Zalpoor H., Hajikhani B. Structural and non-structural proteins in SARS-CoV-2: Potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Comm. Signal. 2023, 21 (1), 110. https://doi.org/10.1186/s12964-023-01104-5

Huang Y., Yang C., Xu X.-f., Xu W., Liu S.-W. Structural and functional properties of SARS-CoV-2 Spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 2020, 41 (9), 1141-1149. https://doi.org/10.1038/s41401-020-0485-4

Wang L., Wu Y., Yao S., Ge H., Zhu Y., Chen K., Chen W.-Z., Zhang Y., Zhu W., Wang H.-Y., Guo Y., Ma P.-X., Ren P.-X., Zhang X.-l., Li H.-Q., Ali M. A., Xu W.-Q., Jiang H.-l., Zhang L.-K., Zhu L.-l., Ye Y., Shang W.-j., Bai F. Discovery of potential small molecular SARS-CoV-2 entry blockers targeting the Spike protein. Acta Pharmacol. Sin. 2022, 43 (4), 788-796. https://doi.org/10.1038/s41401-021-00735-z

Hong Q., Han W., Li J., Xu S., Wang Y., Xu C., Li Z., Wang Y., Zhang C., Huang Z., Cong Y. Molecular basis of receptor binding and antibody neutralization of Omicron. Nature 2022, 604 (7906), 546-552. https://doi.org/10.1038/s41586-022-04581-9

Yan W., Zheng Y., Dou C., Zhang G., Arnaout T., Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: Implication for new drug development. Mol. Biomed. 2022, 3 (1), 48. https://doi.org/10.1186/s43556-022-00106-y

Bose P., Harit A. K., Das R., Sau S., Iyer A. K., Kashaw S. K. Tuberculosis: Current scenario, drug targets, and future prospects. Med. Chem. Res. 2021, 30 (4), 807-833. https://doi.org/10.1007/s00044-020-02691-5

Liu L., Kong C., Fumagalli M., Savková K., Xu Y., Huszár S., Sammartino J. C., Fan D., Chiarelli L. R., Mikušová K., Sun Z., Qiao C. Design, synthesis and evaluation of covalent inhibitors of DpRe1 as antitubercular agents. Eur. J. Med. Chem. 2020, 208 112773. doi: https://doi.org/10.1016/j.ejmech.2020.112773

Snizhko A. D., Kyrychenko A. V., Gladkov E. S. Synthesis of novel derivatives of 5,6,7,8-tetrahydro-quinazolines using of α-aminoamidines and in silico screening of their biological activity. Int. J. Mol. Sci. 2022, 23 (7), 3781. https://doi.org/10.3390/ijms23073781

Hong W., Wang Y., Chang Z., Yang Y., Pu J., Sun T., Kaur S., Sacchettini J. C., Jung H., Lin Wong W., Fah Yap L., Fong Ngeow Y., Paterson I. C., Wang H. The identification of novel Mycobacterium tuberculosis DHFR inhibitors and the investigation of their binding preferences by using molecular modelling. Sci. Rep. 2015, 5 (1), 15328. https://doi.org/10.1038/srep15328

Dal Molin M., Selchow P., Schäfle D., Tschumi A., Ryckmans T., Laage-Witt S., Sander P. Identification of novel scaffolds targeting Mycobacterium tuberculosis. J. Mol. Med. 2019, 97 (11), 1601-1613. https://doi.org/10.1007/s00109-019-01840-7

Reddy B. K. K., Landge S., Ravishankar S., Patil V., Shinde V., Tantry S., Kale M., Raichurkar A., Menasinakai S., Mudugal Naina V., Ambady A., Ghosh A., Tunduguru R., Kaur P., Singh R., Kumar N., Bharath S., Sundaram A., Bhat J., Sambandamurthy Vasan K., Björkelid C., Jones T. A., Das K., Bandodkar B., Malolanarasimhan K., Mukherjee K., Ramachandran V. Assessment of Mycobacterium tuberculosis pantothenate kinase vulnerability through target knockdown and mechanistically diverse inhibitors. Antimicrob. Agents Chemother. 2014, 58 (6), 3312-3326. https://doi.org/10.1128/aac.00140-14

Björkelid C., Bergfors T., Raichurkar A. K. V., Mukherjee K., Malolanarasimhan K., Bandodkar B., Jones T. A. Structural and biochemical characterization of compounds inhibiting Mycobacterium tuberculosis pantothenate kinase. J. Biol. Chem. 2013, 288 (25), 18260-18270. https://doi.org/10.1074/jbc.M113.476473

Chollet A., Mourey L., Lherbet C., Delbot A., Julien S., Baltas M., Bernadou J., Pratviel G., Maveyraud L., Bernardes-Génisson V. Crystal structure of the enoyl-ACP reductase of Mycobacterium tuberculosis (InhA) in the apo-form and in complex with the active metabolite of isoniazid pre-formed by a biomimetic approach. J. Struct. Biol. 2015, 190 (3), 328-337. https://doi.org/10.1016/j.jsb.2015.04.008

Marchenko K. I., Kyrychenko A. V., Kolos N. M. Synthesis and modification of 7-aroyl derivatives of 4,7-dihydro-[1,2,4]triazolo-[1,5-a]-pyrimidine as potent inhibitors of Sirtuin-2. Funct. Mater. 2024, 31 (2), 260-268. https://doi.org/10.15407/fm31.02.260

Zhao X., Allison D., Condon B., Zhang F., Gheyi T., Zhang A., Ashok S., Russell M., MacEwan I., Qian Y., Jamison J. A., Luz J. G. The 2.5 Å crystal structure of the Sirt1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (ex527 analogue) reveals a novel mechanism of histone deacetylase inhibition. J. Med. Chem. 2013, 56 (3), 963-969. https://doi.org/10.1021/jm301431y

Kumar A., Chauhan S. How much successful are the medicinal chemists in modulation of Sirt1: A critical review. Eur. J. Med. Chem. 2016, 119 45-69. https://doi.org/10.1016/j.ejmech.2016.04.063

Lipson V. V., Yaremenko F. G., Vakula V. M., Kovalenko S. V., Kyrychenko A. V., Desenko S. M., Musatov V. I., Borysko P. O., Zozulya S. O. Imidazole derivatives as potent inhibitors of Sirtuin-1. Funct. Mater. 2023, 30 (4), 486-493. https://doi.org/10.15407/fm30.04.486

Lipson V. V., Yaremenko F. G., Vakula V. M., Kovalenko S. V., Kyrychenko A. V., Desenko S. M., Borysko P. О., Zozulya S. O. Discovery of novel N-acylhydrazone derivatives as potent inhibitors of Sirtuin-1. SynOpen 2024, 08 (02), 100-108. https://doi.org/10.1055/s-0043-1763747

Kyrychenko A. V., Ladokhin A. S. Fluorescence tools for studies of membrane protein insertion. Biopolym. Cell. 2018, 34 (4), 251-271. https://doi.org/10.7124/bc.00097F

Ladokhin A. S., Kyrychenko A., Rodnin M. V., Vasquez-Montes V. Conformational switching, refolding and membrane insertion of the diphtheria toxin translocation domain. In Methods Enzymol., Academic Press: 2021; Vol. 649, pp 341-370. https://doi.org/10.1016/bs.mie.2020.12.016

Kyrychenko A., Posokhov Y. O., Rodnin M. V., Ladokhin A. S. Kinetic intermediate reveals staggered pH-dependent transitions along the membrane insertion pathway of the diphtheria toxin T-domain. Biochemistry. 2009, 48 (32), 7584-7594. https://doi.org/10.1021/bi9009264

Rodnin M. V., Kyrychenko A., Kienker P., Sharma O., Posokhov Y. O., Collier R. J., Finkelstein A., Ladokhin A. S. Conformational switching of the diphtheria toxin T domain. J. Mol. Biol. 2010, 402 (1), 1-7. https://doi.org/10.1016/j.jmb.2010.07.024

Rodnin Mykola V., Kyrychenko A., Kienker P., Sharma O., Vargas-Uribe M., Collier R. J., Finkelstein A., Ladokhin Alexey S. Replacement of C-terminal histidines uncouples membrane insertion and translocation in diphtheria toxin T-domain. Biophys. J. 2011, 101 (10), L41-L43. https://doi.org/10.1016/j.bpj.2011.10.018

Kurnikov I. V., Kyrychenko A., Flores-Canales J. C., Rodnin M. V., Simakov N., Vargas-Uribe M., Posokhov Y. O., Kurnikova M., Ladokhin A. S. pH-triggered conformational switching of the diphtheria toxin T-domain: The roles of N-terminal histidines. J. Mol. Biol. 2013, 425 (15), 2752-2764. https://doi.org/10.1016/j.jmb.2013.04.030

Vargas-Uribe M., Rodnin M. V., Öjemalm K., Holgado A., Kyrychenko A., Nilsson I., Posokhov Y. O., Makhatadze G., von Heijne G., Ladokhin A. S. Thermodynamics of membrane insertion and refolding of the diphtheria toxin T-domain. J Membr Biol 2015, 248 (3), 383-394. https://doi.org/10.1007/s00232-014-9734-0

Kyrychenko A., Posokhov Y. O., Vargas-Uribe M., Ghatak C., Rodnin M. V., Ladokhin A. S. Fluorescence applications for structural and thermodynamic studies of membrane protein insertion. In Reviews in fluorescence 2016, Geddes, C. D., Ed. Springer International Publishing: Cham, Switzerland, 2017; pp 243-274. https://doi.org/10.1007/978-3-319-48260-6_10

Rodnin M. V., Vasques-Montes V., Kyrychenko A., Oliveira N. F. B., Kashipathy M. M., Battaile K. P., Douglas J., Lovell S., Machuqueiro M., Ladokhin A. S. Histidine protonation and conformational switching in diphtheria toxin translocation domain. Toxins 2023, 15 (7), Art. num. 410. https://doi.org/10.3390/toxins15070410

Rodnin M. V., Kashipathy M. M., Kyrychenko A., Battaile K. P., Lovell S., Ladokhin A. S. Structure of the diphtheria toxin at acidic pH: Implications for the conformational switching of the translocation domain. Toxins 2020, 12 (11), Art. num. 704. https://doi.org/10.3390/toxins12110704

Isorna P., Polaina J., Latorre-García L., Cañada F. J., González B., Sanz-Aparicio J. Crystal structures of Paenibacillus polymyxa β-glucosidase B complexes reveal the molecular basis of substrate specificity and give new insights into the catalytic machinery of family I glycosidases. J. Mol. Biol. 2007, 371 (5), 1204-1218. https://doi.org/10.1016/j.jmb.2007.05.082

Chepeleva L. V., Tarasenko D. O., Chumak A. Y., Demidov O. O., Snizhko A. D., Kolomoitsev O. O., Kotliar V. M., Gladkov E. S., Tatarets A. L., Kyrychenko A. V., Roshal A. D. 4’-benzyloxyflavonol glucoside as fluorescent indicator for β-glucosidase activity. Funct. Mater. 2023, 30 (4), 494-505. https://doi.org/10.15407/fm30.04.494

Chepeleva L. V., Demidov O. O., Snizhko A. D., Tarasenko D. O., Chumak A. Y., Kolomoitsev O. O., Kotliar V. M., Gladkov E. S., Kyrychenko A., Roshal A. D. Binding interactions of hydrophobically-modified flavonols with β-glucosidase: Fluorescence spectroscopy and molecular modelling study. RSC Adv. 2023, 13 (48), 34107-34121. https://doi.org/10.1039/D3RA06276G

Demidov O. O., Gladkov E. S., Kyrychenko A. V., Roshal A. D. Synthetic and natural flavonols as promising fluorescence probes for β-glucosidase activity screening. Funct. Mater. 2022, 29 (2), 252-262. https://doi.org/10.15407/fm29.02.252

Zhang Y., Vass M., Shi D., Abualrous E., Chambers J. M., Chopra N., Higgs C., Kasavajhala K., Li H., Nandekar P., Sato H., Miller E. B., Repasky M. P., Jerome S. V. Benchmarking refined and unrefined AlphaFold2 structures for hit discovery. J. Chem. Inf. Model. 2023, 63 (6), 1656-1667. https://doi.org/10.1021/acs.jcim.2c01219

Díaz-Rovira A. M., Martín H., Beuming T., Díaz L., Guallar V., Ray S. S. Are deep learning structural models sufficiently accurate for virtual screening? Application of docking algorithms to AlphaFold2 predicted structures. J. Chem. Inf. Model. 2023, 63 (6), 1668-1674. https://doi.org/10.1021/acs.jcim.2c01270

Beuming T., Martín H., Díaz-Rovira A. M., Díaz L., Guallar V., Ray S. S. Are deep learning structural models sufficiently accurate for free-energy calculations? Application of FEP+ to AlphaFold2-predicted structures. J. Chem. Inf. Model. 2022, 62 (18), 4351-4360. https://doi.org/10.1021/acs.jcim.2c00796

Bernatavicius A., Šícho M., Janssen A. P. A., Hassen A. K., Preuss M., van Westen G. J. P. AlphaFold meets de novo drug design: Leveraging structural protein information in multitarget molecular generative models. J. Chem. Inf. Model. 2024, 64 (21), 8113-8122. https://doi.org/10.1021/acs.jcim.4c00309

Gu S., Yang Y., Zhao Y., Qiu J., Wang X., Tong H. H. Y., Liu L., Wan X., Liu H., Hou T., Kang Y. Evaluation of AlphaFold2 structures for hit identification across multiple scenarios. J. Chem. Inf. Model. 2024, 64 (9), 3630-3639. https://doi.org/10.1021/acs.jcim.3c01976

Pei J., Andreeva A., Chuguransky S., Lázaro Pinto B., Paysan-Lafosse T., Dustin Schaeffer R., Bateman A., Cong Q., Grishin N. V. Bridging the gap between sequence and structure classifications of proteins with AlphaFold models. J. Mol. Biol. 2024, 436 (22), 168764. https://doi.org/10.1016/j.jmb.2024.168764

Wee J., Wei G.-W. Evaluation of AlphaFold 3’s protein–protein complexes for predicting binding free energy changes upon mutation. J. Chem. Inf. Model. 2024, 64 (16), 6676-6683. https://doi.org/10.1021/acs.jcim.4c00976

Baek M., DiMaio F., Anishchenko I., Dauparas J., Ovchinnikov S., Lee G. R., Wang J., Cong Q., Kinch L. N., Schaeffer R. D., Millán C., Park H., Adams C., Glassman C. R., DeGiovanni A., Pereira J. H., Rodrigues A. V., van Dijk A. A., Ebrecht A. C., Opperman D. J., Sagmeister T., Buhlheller C., Pavkov-Keller T., Rathinaswamy M. K., Dalwadi U., Yip C. K., Burke J. E., Garcia K. C., Grishin N. V., Adams P. D., Read R. J., Baker D. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373 (6557), 871-876. https://doi.org/10.1126/science.abj8754

Ahdritz G., Bouatta N., Floristean C., Kadyan S., Xia Q., Gerecke W., O’Donnell T. J., Berenberg D., Fisk I., Zanichelli N., Zhang B., Nowaczynski A., Wang B., Stepniewska-Dziubinska M. M., Zhang S., Ojewole A., Guney M. E., Biderman S., Watkins A. M., Ra S., Lorenzo P. R., Nivon L., Weitzner B., Ban Y.-E. A., Chen S., Zhang M., Li C., Song S. L., He Y., Sorger P. K., Mostaque E., Zhang Z., Bonneau R., AlQuraishi M. Openfold: Retraining AlphaFold2 yields new insights into its learning mechanisms and capacity for generalization. Nat. Methods 2024, 21 (8), 1514-1524. https://doi.org/10.1038/s41592-024-02272-z

Published
2024-09-11
Cited
How to Cite
Duma, Y., & Kyrychenko, A. (2024). Benchmarking Google DeepMind’s AlphaFold 3 Performance for Protein 3D-Structure Prediction. Kharkiv University Bulletin. Chemical Series, (43), 6-25. https://doi.org/10.26565/2220-637X-2024-43-01