Effects of Gamma-Activation and Functionality Characteristics of Superdispersed ZrO2 –Catalystes in Methanol Conversion
Abstract
On the example of a model system the methanol conversion influence of effects of γ-activation of nano ZrO2-catalystes is investigated on their functional characteristics in the processes of heterogeneous catalysis. Influence of γ-activation nanopowder ZrO2 on direction and reaction yield was controled up on the series of experiments at room temperature with nominally clean ZrO2 and with ZrO2 with addition of nano-Fe2O (~3%) in their initial and the γ-activated state. Activating of samples was carried out by bremsstrahlung on high-current electronic accelerator in NSC KIPT at energy of electrons 22 MeV and a current 500 μA. The features of structural transformations in γ-activated ZrO2 were researched the method of X-ray diffractometry. It was shown that in the structure of ZrO2 no essential changes and γ-activated particles of oxide keep monophase state and crystallinity of the initial state. Catalytic activity of ZrO2 and ZrO2/Fe2O3 before and after their γ-activated was estimated on the absorbency of products of convertion reaction of methanol on the spectrophotometer of SF-46. The found out the sharp increase of activity of ZrO2-catalystеs after their γ-activated is ascribed to synergy of factors of ionizing radiation - big ionization losses of Auger electrons near a surface ZrO2 nanoparticles from 89Zr - and influences of high-reactionary formations of heterogeneous catalysis.
Downloads
References
Gao Q. Fang X., Wu X. et al. Mesoporous zirconia nanobelts: Preparation, characterization and application in catalytical methane combustion // Microp. Mesop. Mat. -2011. – Vol. 143. – P.333-340.
Li Y., He D.H., Cheng Z.X. et al. Effect of calcium salts on isosynthesis over ZrO2 catalysts //J. Mol. Catal. A: Chem. − 2001. − Vol. 175. − P. 267-275.
Murase Y., Kato E. Role Water Varop in Crystalline Growth and Tetragonal-Monocline Phase Transformation of ZrO2 // J. Am. Ceram. Soc. − 1983. − Vol. 66. − P.196-200.
Konstantinova T.E., Danilenko I.A., Pilipenko N.P., Volkova G.K. Nanomaterials for SOFC electrolytes and anodes on the base of zirconia // Electrochem. Soc. Proc. – 2003. − Vol. 7. – P. 153-159.
Xia C.R., Cao H.Q., Wang H. et al. Sol–gel synthesis of yttria stabilized zirconia membranes through controlled hydrolysis of zirconium alkoxide // J. Membr. Sci. −1992. − Vol.162. − P. 181-188.
Lu Y., Bangsaruntip S., Wang X. et al. DNA Functionalization of Carbon Nanotubes for Ultrathin Atomic Layer Deposition of High Dielectrics for Nanotube Transistors with 60 mV/Decade Switching // J. Am. Chem. Soc. −2006. − Vol. 128. −P. 3518-3519.
Wang S.J. Crystalline zirconia oxide on silicon as alternative gate dielectrics // Appl. Phys. Lett. .−2001.− Vol. 78. − P.1604-1606.
Patra A., Friend C., Kapoor R. Upconversion in Er3+:ZrO2 Nanocrystals //J. Phys. Chem. B.−2002.− Vol. 106. − P.1909-1912.
Mikhaylov M.M., Neshchimenko V.V., Skripka N.G. et al. Оптические свойства и радиационная стойкость порошков диоксида циркония, модифицированных редкоземельными элементами [Optical properties and radiation resistance of rare earth modified zirconia powders], Перспективные материалы [Promising materials], 3, 14-20 (2010). (in Rusian)
Wang F. Banerjee D., Liu Y. et al. Upconversion nanoparticles in biological labeling, imaging, and therapy // Analyst − 2010. − Vol. 135. − P. 1839-1854.
Hino M., Arata K. Synthesis of Solid Superacid of Tungsten Oxide Supported Zirconia and Its Catalytic Action of Reactions of Butane and Pentane // Chem. Commun. − 1998. − Vol.18. − P.1259-1260.
Jason L.B., Alexis T.B. Mechanistic Studies of Methanol Oxidation to Formaldehyde on Isolated Vanadate Sites Supported on High Surface Area Zirconia // J. Phys. Chem. C. − 2008. − Vol. 112. − P. 6404-6412.
Iglesia E., Soled S.L., Kramer G.M. Isomerization of Alkanes on Sulfated Zirconia: Promotion by Pt and by Adamantyl Hydride Transfer Species // J. Catal. −1993. − Vol. 144. −P.238-253.
Refaat A.A. Biodiesel production using solid metal oxide catalysts // Int. J. Environ. Sci. Tech.−2011.− Vol. 8. −P. 203-221.
Kalinovich D.F., Kuznetsova L.I., Denisenko E.T. Диоксид циркония: свойства и применение [Zirconium dioxide: properties and applications], Порошковая металлургия [Powder Metallurgy], 11, 98-103 (1987). (In Russian)
Zavodinskiy V.G., Chibisov A.N. О стабильности кубического диоксида циркония и стехиометрических наночастиц диоксида циркония [On the stability of cubic zirconia and stoichiometric zirconia nanoparticles], Физика твердого тела [Solid state physics], 48(2), 343-347 (2006). (in Russian)
Cao H.Q., Qiu X.Q., Luo B., Y. et al. Synthesis and Room-Temperature Ultraviolet Photoluminescence Properties of Zirconia Nanowires. //Adv. Funct. Mater. −2004. −Vol. 14. − P. 243-246.
Gracia F., Wolf E.E.. Monte Carlo simulations of the effect of crystallite size on the activity of a supported catalyst // Chem. Eng. Jour.- 2001.-Vol. 82.- P. 291-301.
Hsu C., Heimbuch C., Armes C.T et al. A Highly Active Solid Superacid Catalyst for n-Butane Isomerization: A Sulfated Oxide Containing Iron, Manganese and Zirconium // J. Chem. Soc., Chem. Commun. −1992. − Issue 22. − P. 1645 - 1646.
Tanabe K. Surface and catalytic properties of ZrO2 // Mat. Chem. Phys. – 1985. – Vol. 3. – Р. 747-764.
Sinev M.Yu. Free radicals in catalytic oxidation of light alkanes: Kinetic and thermo-chemical aspects // J. Catal. – 2003. - Vol. 216 (1-2). - Р. 468-476.
Mouaddib N., Feumi-Jantou C., Garbbowski E. et al. Catalytic oxidation of methane over palladium supported on alumina: Influence of the oxygen-to-methane ratio // Appl. Catal. A. − 1992.− Vol. 87. − P.129-144.
Marti P.E., Maciejewski M., Baiker A. Methane combustion over LaO.8SrO.2MnO3+x supported on MAl2O4 (M = Mg, Ni and Co) spinels // Appl. Catal. B − 1994. − Vol. 4. − P. 225-235.
Choudhary V.R., Uphade B.S., Pataskar S.G et al. Low-Temperature Complete Combustion of Methane over Mn-, Co-, and Fe-Stabilized ZrO2 // Angew. Chem. Int. Ed. − 1996. − Vol. 35. − P.2393-2395.
Cimino S., Colonna S., Rossi S. et al. Methane Combustion and CO Oxidation on Zirconia-Supported La, Mn Oxides and LaMnO3 Perovskite // J. Catal. − 2002. − Vol. 205. − P.309-317.
Saad L., Riad M. Characterization of various zinc oxide catalysts and their activity in the dehydration-dehydrogenation of isobutanol // J. Serb. Chem. Soc. – 2008. − Vol. 73(6). − P.997-1009.
Iglesia E., Soled S., Kramer G. Isomerization of Alkanes on Sulfated Zirconia: Promotion by Pt and by Adamantyl Hydride Transfer Species // J. Catal. −1993. − Vol. 144. − P. 238-253.
Huang F., Chen D., Zhou J. et al. Modifying the phase and controlling the size of monodisperse ZrO2 nanocrystals by employing Gd3+ as a nucleation agent // Cryst. Eng.Comm. −2011. − Vol. 13. − P. 4500-4502.
Sudhakar C., Rao V. and Kuriacose J. Influence of Irradiation on the Catalitic Properties of zinc oxide // Radiat. Phys. Chem. . −1982. − Vol. 19. − P. 101-105.
Zhang S., Zu Y., Fu Y. et al. Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst // Bioresour. Tech. − 2010. − Vol. 101. − P. 931-936.
Koberg M., Abu-Much R., Gedanken A. Optimization of bio-diesel production from soybean and wastes of cooked oil: Combining dielectric microwave irradiation and a SrO catalyst // Bioresour. Tech. − 2010. − Vol. 99. − P. 3439-3443.
Hsiao M., Lin C., Chang Y. et al. Ultrasonic mixing and closed microwave irradiation-assisted transesterification of soybean oil // Fuel. − 2009. − Vol. 89. − P. 3618-3622.
Kumar D., Kumar G., Poonam С. et al. Ultrasonic-assisted transesterification of Jatropha curcus oil using solid catalyst, Na/SiO2 // Ultrasonics Sonochemistry. −2010. − Vol. 17. − P. 839-844.
Klug H.P., Alexander L.E. X-ray Diffraction Procedures For Polycrystalline and Amorphous Materials.– New York, 1974.– 665p.
Forster H. UV/VIS Spectroscopy // Mol. Sieves. – 2004. – Vol.4. – Р. 337-426.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).