Cognitive disorders of patients with cerebrovascular disorders who suffered from COVID-19
Abstract
The purpose of the research was to study the features of cognitive functions in COVID-19 patients with chronic cerebrovascular
disorders. It has been discovered, that by all patients, who have recovered from COVID-19, moderate and severe cognitive impairments
were identified. In this group of patients a significant progression of cognitive deficit was noted in compared to the group of patients
without COVID-19. The main forms of disorders in COVID-19 patients with cerebrovascular pathology, were violations of attention and
decreasing of information processing speed, and disorders of short-term working memory, instead long-term memory and recognition
memory suffered much less. Our research demonstrated better sensitivity of the MoCA scale for detecting cognitive impairment in
COVID-19 patients with cerebrovascular pathology. The majority of patients had cognitive impairment within 6 months after recovery from
COVID-19, what indicated the necessity for long-term monitoring and timely treatment of these patients.
Downloads
References
/References
PLoS ONE. 2021. 16(2). e0246590. doi.org/10.1371/journal.pone.0246590
2. Girard T.D., Thompson J.L., Pandharipande P.P. et al. Clinical phenotypes of delirium during critical illness and severity of subsequent long-term cognitive impairment: a prospective cohort study. Lancet Respir. Med. 2018. 6(3). Р. 213-22.
doi: 10.1016/S2213- 2600(18)30062-6. PMID: 29508705; PMCID: PMC6709878.
3. Ellual M.A., Benjamin L., Singh B. et al. Neurological associations of COVID-19. Lancet Neurol. 2020 Sep:19(9):767-83. doi: 10.1016/S1474-4422(20)30221-0. Epub.2020 Jul 2.
4. Boulay C., Fafi-Kremer S., Castelain V. et al. Delirium and encephalopathy in severe COVID-19: a cohort analysis of ICU patients. Crit. Care. 2020. 24(1). P. 491. doi: 10.1186/s13054-020-03200-1. PMID: 32771053; PMCID: PMC7414289.
5. Varatharaj A., Thomas N., Ellul M.A. et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. 2020. 7(10). P. 875-882. doi: 10.1016/S2215-0366(20)30287-X.
6. Romero-Sánchez C., Díaz-Maroto I., Fernández-Díaz E. et al. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. The ALBACOVID registry. Neurology. 2020. 95(8). e1060-e1070.
doi: 10.1212/WNL.0000000000009937.
7. Beach S.R., Praschan N.C., Hogan C. et al. Delirium in COVID-19: A case series and exploration of potential mechanisms for central nervous system involvement. Gen. Hosp. Psychiatry. 2020. 65. P. 47-53. doi: 10.1016/j.genhosppsych.2020.05.008. 2020. 65. 47-53.
8. Zubair A.S., McAlpine L.S., Gardin T. et al. Neuropathogene-sis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurol. 2020. 77(8). P. 101801027. doi:10.1001/jamaneurol.2020.2065.
9. Bohmwald K., Gálvez N.M.S., Ríos M., Kalergis A.M. Neurologic alterations due to respiratory virus infections. Front. Cell. Neurosci. 2018. 12(386). P. 386. doi:10.3389/fncel.2018.00386.
10. Desforges M., Le Coupanec A., Brison E., Meessen-Pinard M., Talbot P.J. Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans. Adv. Exp. Med. Biol. 2014. 807. P. 75-96.
doi:10.1007/978-81-322-1777-06.
11. Kim W.-K., Corey S., Alvarez X., Williams K. Monocyte/macrophage traffic in HIV and SIV encephalitis. J. Leukoc. Biol. 2003. 74(5). P. 650-656. doi:10.1189/jlb.0503207.
12. Sankowski R., Mader S., Valdés-Ferrer S.I. Systemic inflammation and the brain: novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front. Cell. Neurosci. 2015. 9(28). P. 28. doi:10.3389/fncel.2015.00028.
13. Panariello F., Cellini L., Speciani M., De Ronchi D., Atti A.R. How Does SARSCoV-2 Affect the Central Nervous System? A Wor-king Hypothesis. Front. Psychiatry. 2020. 11. P. 582345. doi: 10.3389/ fpsyt.2020.582345.
14. Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020. 181(2). P. 271-280.
doi:10.1016/j.cell.2020.02.052.
15. Chen R., Wang K., Yu J. et al. The Spatial and Cell-Type Distribution of SARS-CoV-2 Receptor ACE2 in the Human and Mouse Brains. Front Neurol. 2021. 11. P. 573095. doi: 10.3389/ fneur.2020.573095.
16. Shang J., Wan Y., Luo C.et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA. 2020. 117. P. 11727-34.doi: 10.1073/pnas.2003138117.
17. Lazaroni T.L.N., Raslan A.C.S., Fontes W.R.P. et al. Angiotensin-(1–7)/Mas axis integrity is required for the expression of object recognition memory. Neurobiol. Learn. Mem. 2012. 97. P. 113-23. doi: 10.1016/j.nlm.2011.10.003.
18. Wang X.-L., Iwanami J., Min L.-J. et al. Deficiency of angiotensin-converting enzyme 2 causes deterioration of cognitive function. NPJ Aging Mech. Dis. 2016. 2. P. 16024. doi: 10.1038/ npjamd.2016.24.
19. Kehoe P.G., Hibbs E., Palmer L.E., Miners J.S. Angiotensin- III is Increased in Alzheimer’s Disease in Association with Amyloid-β and Tau Pathology. J. Alzheimers Dis. 2017. 58(1). P. 203-214. doi: 10.3233/JAD-161265. PMID: 28387670.
20. Miners J.S., Ashby E., Van Helmond Z. et al. Angiotensin-converting enzyme (ACE) levels and activity in Alzheimer’s disease, and relationship of perivascular ACE-1 to cerebral amyloid angio-pathy. Neuropathol. Appl. Neurobiol. 2008. 34(2). P. 181-93. doi: 10.1111/j.1365-2990.2007.00885.x.
21. Miners S., Ashby E., Baig S. et al. Angiotensin-converting enzyme levels and activity in Alzheimer’s disease: differences in brain and CSF ACE and association with ACE1 genotypes. Am. J. Transl. Res. 2009. 1(2). P. 163-77. PMID: 19956428.
22. Miners S., Kehoe P.G., Love S. Cognitive impact of COVID-19: looking beyond the short term. Alzheimers Res. Ther. 2020. 12(1). P. 170. doi: 10.1186/s13195-020-00744-w.
23. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [published correction appears in Lancet. 2020 Jan 3]. Lancet. 2020. 395(10223). P. 497-506. doi:10.1016/S0140-6736(20)30183-5.
24. Chakrabarty T., Torres I.J., Bond D.J., Yatham L.N. Inflammatory cytokines and cognitive functioning in early-stage bipolar I disorder. J. Affect. Disord. 2019. 245. P. 679-685. doi: 10.1016/j. jad.2018.11.018.
25. Duarte P.O., Duarte M.G.F., Pelichek A., Pfrimer K., Ferriolli E., Moriguti J.C., Lima N.K.C. Cardiovascular risk factors and inflammatory activity among centenarians with and without dementia. Aging Clin. Exp. Res. 2017. 29(3). P. 411-417.
doi: 10.1007/s40520- 016-0603-9.
26. Zheng F., Xie W. High-sensitivity C-reactive protein and cognitive decline: the English Longitudinal Study of Ageing. Psychol. Med. 2018. 48(8). P. 1381-1389. doi: 10.1017/S0033291717003130.
27. Zhou H., Lu S., Chen J. et al. The landscape of cognitive function in recovered COVID-19 patients. J. Psychiatr. Res. 2020. 129. P. 98-102. doi:10.1016/j.jpsychires.2020.06.022.
28. Vintimilla R., Hall J., Johnson L., O’Bryant S. The relationship of CRP and cognition in cognitively normal older Mexican Americans: A cross-sectional study of the HABLE cohort. Medicine (Baltimore). 2019. 98(19). e15605.
doi:10.1097/MD.0000000000015605.
29. Han H.B., Lee K.E., Choi J.H. Functional Dissociation of θ Oscillations in the Frontal and Visual Cortices and Their Long-Range Network during Sustained Attention. eNeuro. 2019. 6(6). ENEURO.0248-19.2019. doi:10.1523/ENEURO.0248-19.2019.
30. Mitko A., Rothlein D., Poole V. et al. Individual differences in sustained attention are associated with cortical thickness. Hum. Brain Mapp. 2019. 40(11). P. 3243-3253. doi:10.1002/hbm.24594.
31. Sasannejad C., Ely E.W., Lahiri S. Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms.Crit.Care Lond. Engl. 2019. 23. 352. doi:10.1186/s13054-019-2626-z.
32. Wilcox M.E., Brummel N.E., Archer K. et al. Cognitive dysfunction in ICU patients: risk factors, predictors, and rehabilitation interventions. Crit. Care Med. 2013. 41. S81-98. doi:10.1097/ CCM.0b013e3182a16946.
33. Mikkelsen M.E., Christie J.D., Lanken P.N. et al. The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am. J. Respir. Crit. Care Med. 2012. 185. P. 1307-1315.
doi:10.1164/rccm. 201111-2025OC.
34. Beaud V., Crottaz-Herbette S., Dunet V. et al. Pattern of cognitive deficits in severe COVID-19. J. Neurol Neurosurg. Psychiatry. 2021. 92. P. 67-568. doi: 10.1136/jnnp-2020- 325173.
35. Hopkins R.O., Weaver L.K., Collingridge D. et al. Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2005. 171(4). P. 340-7. doi: 10.1164/rccm.200406-763OC.
36. Helms J., Kremer S., Merdji H. et al. Delirium and encephalopathy in severe COVID-19: a cohort analysis of ICU patients. Crit. Care. 2020. 24(1). P. 491. doi: 10.1186/s13054-020- 03200-1.
37. Hopkins R.O., Gale S.D., Weaver L.K. Brain atrophy and cognitive impairment in survivors of Acute Respiratory Distress Syndrome. Brain Inj. 2006. 20(3). P. 263-71. doi: 10.1080/02699050500488199.
38. Maydych V. The Interplay Between Stress, Inflammation, and Emotional Attention: Relevance for Depression. Front Neurosci. 2019. 13. P. 384. doi: 10.3389/fnins.2019.00384.
39. Carfì A., Bernabei R., Landi F. Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020. 324(6). P. 603-605. doi: 10.1001/ jama.2020.12603.
40. Garrigues E., Janvier P., Kherabi Y. et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J. Infect. 2020. 81. e4-e6. doi:10.1016/j. jinf.2020.08.029.
41. Mahase E. Long covid could be four different syndromes, review suggests. BMJ. 2020. 371. m3981. doi: 10.1136/bmj.m3981.
42. Miskowiak K.W., Johnsen S., Sattler S.M. et al. Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. Eur. Neuropsychopharmacol. 2021. 46. P. 39-48. doi: 10.1016/j. euroneuro.2021.03.019.
43. Vinkers C.H., van Amelsvoort T., Bisson J.I. et al. Stress resi-lience during the coronavirus pandemic. Eur. Neuropsychopharmacol. 2020. 35. P. 12-16. doi: 10.1016/j.euroneuro.2020.05.003.
44. Folstein M., Folstein S., McHugh PR. Mini-mental state: a practical method for grading the cognitive state ofpatients for the clinical //J. Psychiatr. Res. - 1975. - Vol. 12. - P. 189-198
Alemanno F., Houdayer E., Parma A. et al. COVID-19 cog¬nitive deficits after respiratory assistance in the subacute phase: A COVID-rehabilitation unit experience. PLoS ONE. 2021. 16(2). e0246590.
doi.org/10.1371/journal.pone.0246590
Girard T.D., Thompson J.L., Pandharipande P.P. et al. Clini¬cal phenotypes of delirium during critical illness and severity of sub¬sequent long-term cognitive impairment: a prospective cohort study. Lancet Respir. Med. 2018. 6(3). Р. 213-22. doi: 10.1016/S2213- 2600(18)30062-6. PMID: 29508705; PMCID: PMC6709878.
Ellual M.A., Benjamin L., Singh B. et al. Neurological associations of COVID-19. Lancet Neurol. 2020 Sep:19(9):767-83. doi: 10.1016/S1474-4422(20)30221-0. Epub.2020 Jul 2.
Boulay C., Fafi-Kremer S., Castelain V. et al. Delirium and en¬cephalopathy in severe COVID-19: a cohort analysis of ICU patients. Crit. Care. 2020. 24(1). P. 491. doi: 10.1186/s13054-020-03200-1. PMID: 32771053; PMCID: PMC7414289.
Varatharaj A., Thomas N., Ellul M.A. et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. 2020. 7(10). P. 875-882. doi: 10.1016/S2215-0366(20)30287-X.
Romero-Sánchez C., Díaz-Maroto I., Fernández-Díaz E. et al. Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. The ALBACOVID registry. Neurology. 2020. 95(8). e1060-e1070. doi: 10.1212/WNL.0000000000009937.
Beach S.R., Praschan N.C., Hogan C. et al. Delirium in COVID-19: A case series and exploration of potential mechanisms for central nervous system involvement. Gen. Hosp. Psychiatry. 2020. 65. P. 47-53. doi: 10.1016/j.genhosppsych.2020.05.008. 2020. 65. 47-53.
Zubair A.S., McAlpine L.S., Gardin T. et al. Neuropathogene-sis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurol. 2020. 77(8). P. 101801027. doi:10.1001/jamaneurol.2020.2065.
Bohmwald K., Gálvez N.M.S., Ríos M., Kalergis A.M. Neuro¬logic alterations due to respiratory virus infections. Front. Cell. Neuro¬sci. 2018. 12(386). P. 386. doi:10.3389/fncel.2018.00386.
Desforges M., Le Coupanec A., Brison E., Meessen-Pi¬nard M., Talbot P.J. Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans. Adv. Exp. Med. Biol. 2014. 807. P. 75-96. doi:10.1007/978-81-322-1777-06.
Kim W.-K., Corey S., Alvarez X., Williams K. Monocyte/mac¬rophage traffic in HIV and SIV encephalitis. J. Leukoc. Biol. 2003. 74(5). P. 650-656. doi:10.1189/jlb.0503207.
Sankowski R., Mader S., Valdés-Ferrer S.I. Systemic inflam¬mation and the brain: novel roles of genetic, molecular, and environ¬mental cues as drivers of neurodegeneration. Front. Cell. Neurosci. 2015. 9(28). P. 28. doi:10.3389/fncel.2015.00028.
Panariello F., Cellini L., Speciani M., De Ronchi D., Atti A.R. How Does SARS-CoV-2 Affect the Central Nervous System? A Wor-king Hypothesis. Front. Psychiatry. 2020. 11. P. 582345. doi: 10.3389/ fpsyt.2020.582345.
Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020. 181(2). P. 271-280.
doi:10.1016/j.cell.2020.02.052.
Chen R., Wang K., Yu J. et al. The Spatial and Cell-Type Distribution of SARS-CoV-2 Receptor ACE2 in the Human and Mouse Brains. Front Neurol. 2021. 11. P. 573095. doi: 10.3389/ fneur.2020.573095.
Shang J., Wan Y., Luo C.et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci USA. 2020. 117. P. 11727-34.
doi: 10.1073/pnas.2003138117.
Lazaroni T.L.N., Raslan A.C.S., Fontes W.R.P. et al. Angio¬tensin-(1–7)/Mas axis integrity is required for the expression of object recognition memory. Neurobiol. Learn. Mem. 2012. 97. P. 113-23.
doi: 10.1016/j.nlm.2011.10.003.
Wang X.-L., Iwanami J., Min L.-J. et al. Deficiency of angiotensin-converting enzyme 2 causes deterioration of cognitive function. NPJ Aging Mech. Dis. 2016. 2. P. 16024. doi: 10.1038/ npjamd.2016.24.
Kehoe P.G., Hibbs E., Palmer L.E., Miners J.S. Angiotensin- III is Increased in Alzheimer’s Disease in Association with Amyloid-β and Tau Pathology. J. Alzheimers Dis. 2017. 58(1). P. 203-214. doi: 10.3233/JAD-161265. PMID: 28387670.
Miners J.S., Ashby E., Van Helmond Z. et al. Angiotensin-converting enzyme (ACE) levels and activity in Alzheimer’s disease, and relationship of perivascular ACE-1 to cerebral amyloid angio-pathy. Neuropathol. Appl. Neurobiol. 2008. 34(2). P. 181-93. doi: 10.1111/j.1365-2990.2007.00885.x.
Miners S., Ashby E., Baig S. et al. Angiotensin-converting enzyme levels and activity in Alzheimer’s disease: differences in brain and CSF ACE and association with ACE1 genotypes. Am. J. Transl. Res. 2009. 1(2). P. 163-77. PMID: 19956428.
Miners S., Kehoe P.G., Love S. Cognitive impact of COVID-19: looking beyond the short term. Alzheimers Res. Ther. 2020. 12(1). P. 170. doi: 10.1186/s13195-020-00744-w.
Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [published cor¬rection appears in Lancet. 2020 Jan 3]. Lancet. 2020. 395(10223). P. 497-506. doi:10.1016/S0140-6736(20)30183-5.
Chakrabarty T., Torres I.J., Bond D.J., Yatham L.N. In¬flammatory cytokines and cognitive functioning in early-stage bipolar I disorder. J. Affect. Disord. 2019. 245. P. 679-685. doi: 10.1016/j. jad.2018.11.018.
Duarte P.O., Duarte M.G.F., Pelichek A., Pfrimer K., Fer¬riolli E., Moriguti J.C., Lima N.K.C. Cardiovascular risk factors and inflammatory activity among centenarians with and without dementia. Aging Clin. Exp. Res. 2017. 29(3). P. 411-417. doi: 10.1007/s40520- 016-0603-9.
Zheng F., Xie W. High-sensitivity C-reactive protein and cog¬nitive decline: the English Longitudinal Study of Ageing. Psychol. Med. 2018. 48(8). P. 1381-1389. doi: 10.1017/S0033291717003130.
Zhou H., Lu S., Chen J. et al. The landscape of cognitive function in recovered COVID-19 patients. J. Psychiatr. Res. 2020. 129. P. 98-102. doi:10.1016/j.jpsychires.2020.06.022.
Vintimilla R., Hall J., Johnson L., O’Bryant S. The re¬lationship of CRP and cognition in cognitively normal older Mexican Americans: A cross-sectional study of the HABLE co¬hort. Medicine (Baltimore). 2019. 98(19). e15605. doi:10.1097/ MD.0000000000015605.
Han H.B., Lee K.E., Choi J.H. Functional Dissociation of θ Oscillations in the Frontal and Visual Cortices and Their Long-Range Network during Sustained Attention. eNeuro. 2019. 6(6). ENEU¬RO.0248-19.2019. doi:10.1523/ENEURO.0248-19.2019.
Mitko A., Rothlein D., Poole V. et al. Individual differences in sustained attention are associated with cortical thickness. Hum. Brain Mapp. 2019. 40(11). P. 3243-3253. doi:10.1002/hbm.24594.
Sasannejad C., Ely E.W., Lahiri S. Long-term cognitive im¬pairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms.Crit.Care Lond. Engl. 2019. 23. 352. doi:10.1186/s13054-019-2626-z.
Wilcox M.E., Brummel N.E., Archer K. et al. Cognitive dysfunction in ICU patients: risk factors, predictors, and rehabilita¬tion interventions. Crit. Care Med. 2013. 41. S81-98. doi:10.1097/ CCM.0b013e3182a16946.
Mikkelsen M.E., Christie J.D., Lanken P.N. et al. The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am. J. Respir. Crit. Care Med. 2012. 185. P. 1307-1315. doi:10.1164/rccm. 201111-2025OC.
Beaud V., Crottaz-Herbette S., Dunet V. et al. Pat¬tern of cognitive deficits in severe COVID-19. J. Neurol Neuro¬surg. Psychiatry. 2021. 92. P. 67-568. doi: 10.1136/jnnp-2020- 325173.
Hopkins R.O., Weaver L.K., Collingridge D. et al. Two-year cognitive, emotional, and quality-of-life outcomes in acute respira¬tory distress syndrome. Am. J. Respir. Crit. Care Med. 2005. 171(4). P. 340-7. doi: 10.1164/rccm.200406-763OC.
Helms J., Kremer S., Merdji H. et al. Delirium and en¬cephalopathy in severe COVID-19: a cohort analysis of ICU pa¬tients. Crit. Care. 2020. 24(1). P. 491. doi: 10.1186/s13054-020- 03200-1.
Hopkins R.O., Gale S.D., Weaver L.K. Brain atro¬phy and cognitive impairment in survivors of Acute Respira¬tory Distress Syndrome. Brain Inj. 2006. 20(3). P. 263-71. doi: 10.1080/02699050500488199.
Maydych V. The Interplay Between Stress, Inflammation, and Emotional Attention: Relevance for Depression. Front Neurosci. 2019. 13. P. 384. doi: 10.3389/fnins.2019.00384.
Carfì A., Bernabei R., Landi F. Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020. 324(6). P. 603-605. doi: 10.1001/ jama.2020.12603.
Garrigues E., Janvier P., Kherabi Y. et al. Post-discharge persistent symptoms and health-related quality of life after hospi¬talization for COVID-19. J. Infect. 2020. 81. e4-e6. doi:10.1016/j. jinf.2020.08.029.
Mahase E. Long covid could be four different syndromes, review suggests. BMJ. 2020. 371. m3981. doi: 10.1136/bmj.m3981.
Miskowiak K.W., Johnsen S., Sattler S.M. et al. Cogni¬tive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. Eur. Neu¬ropsychopharmacol. 2021. 46. P. 39-48. doi: 10.1016/j.euroneu¬ro.2021.03.019.
Vinkers C.H., van Amelsvoort T., Bisson J.I. et al. Stress resi-lience during the coronavirus pandemic. Eur. Neuropsychopharmacol. 2020. 35. P. 12-16. doi: 10.1016/j.euroneuro.2020.05.003.
Folstein M., Folstein S., McHugh PR. Mini-mental state: a practical method for grading the cognitive state ofpatients for the clinical //J. Psychiatr. Res. - 1975. - Vol. 12. - P. 189-198.