Neuroplasticity induction using transcranial magnetic stimulation
Abstract
In this article, we have displayed the results of an analysis of modern scientific data on the induction of neuroplasticity using transcranial magnetic stimulation. We presented the multilevel neuroplastic effects of electromagnetic fields caused by transcranial magnetic stimulation (TMS). The authors of the article determined that transcranial magnetic stimulation uses variable magnetic fields to non-invasively stimulate neurons in the brain. The basis of this method is the modulation of neuroplasticity mechanisms with the subsequent reorganization of neural networks. Repeated TMS (rTMS), which is widely used in neurology, affects neurotransmitters and synaptic plasticity, glial cells and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth, as well as growth and neurotrophic factors, are described. An important aspect of the action of TMS is its effect on neuroprotective mechanisms. A neuroimaging study of patients with Parkinson's disease showed that rTMS increased the concentration of endogenous dopamine in the ipsilateral striatum. After rTMS exposure, the number of β-adrenergic receptors in the frontal and cingulate cortex decreases, but the number of NMDA receptors in the ventromedial thalamus, amygdala, and parietal cortex increases. These processes ultimately lead to the induction of prolonged potentiation. In response to rTMS, neuronal excitability changes due to a shift in ion balance around a population of stimulated neurons; this shift manifests itself as altered synaptic plasticity. Combinations of rTMS treatment and pharmacotherapy (e.g., small doses of memantine) may block the alleviating effect during prolonged potentiation. Studies using models of transient ischemic attack and prolonged ischemia have shown that rTMS protects neurons from death and alters the blood flow and metabolism in the brain. It has been demonstrated that TMS has a proven ability to modulate the internal activity of the brain in a frequency-dependent manner, generate contralateral responses, provide, along with the neuromodulating and neurostimulating effect, affect the brain as a global dynamic system.
Downloads
References
Nitsche M.A., Paulus W. Transcranial direct current stimulation-update. Restor Neurol Neurosci, 2011, Vol. 29(6). – Р.463-92.
Chervyakov A.V., Poydasheva A.G., Lyukmanov R.H. Еffects of Navigated Repetitive Transcranial Magnetic Stimulation After Stroke. Journal of Clinical Neurophysiology, 2018, Vol. 35(2), Р.166-172.
Korzhova J., Sinitsyn D., Chervyakov A. [et al.]. Transcranial and spinal cord magnetic stimulation in treatment of spasticity. A literature review and meta-analysis. European Journal of Physical and Rehabilitation Medicine, 2018, Vol.54(1), Р.75-84.
Belyaev A. A., Isaykova O. I., Son A. S. [Likuvalni efekti transkranialnoyi magnitnoyi stimulyatsiyi pri zahvoryuvannyah nervovoyi sistemi]. Dosyagnennya biologiyi ta meditsini, 2015, №1(25), S.71-75. [In Ukr.]
Suponeva N. A., Bakulin I. S., Poydasheva A. G. [i dr.]. [Bezopasnost transkranialnoy magnitnoy stimulyatsii: obzor mezhdunarodnyih rekomendatsiy i novyie dannyie]. Nervno-myishechnyie bolezni, 2017, Tom 7, №2, S.21-36. [In Rus.]
Chervyakov A., Sinitsyn D., Chernyavsky A. [et al.]. Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Front. in Hum. Neurosci, 2015, Jun 16, №9, р.303.
Strafella A.P., Paus T., Barrett J. [et al.]. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J. Neurosci, 2001, №21(15), Р.1-4.
Cho S.S., Strafella A.P. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS ONE, 2009, 4(8): e6725; Published: August 21.
Huang Y.Z., Chen R. S., Rothwell J.C. [et al.]. The after-effect of human theta burst stimulation is NMDA receptor dependent. Clin. Neurophysiol., 2007, № 118, Р.1028-1032.
Cho S., Nam Y., Chu L. [et al.]. Extremely low-frequency magnetic fields modulate nitric oxide signaling in rat brain. Bioelectromagnetics, 2012, № 33, Р.568-574.
Hoogendam J.M., Ramakers G.M., Di Lazzaro V. Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul., 2010, №2, Р.95-118.
Duffau H. Brain plasticity: from pathophysiological mechanisms to therapeutic applications. J. Clin. Neurosci., 2006, №13, Р.885-897.
Cooke S.F., Bliss T.V. Plasticity in the human central nervous system. Brain, 2006, № 129 (Pt.7), Р.1659-1673.
Teo J.T., Swayne O.B., Rothwell J.C. Further evidence for NMDA-dependence of the after-effects of human theta burst stimulation. Clin. Neurophysiol., 2007, №118, Р.1649-1651.
May A., Hajak G., Gänssbauer S. [et al.]. Structural brain alterations following 5 days of intervention: dynamic aspects of neuroplasticity. Cereb. Cortex, 2007, №17, Р.205-210.
May A. Experience-dependent structural plasticity in the adult human brain. Trends Cogn. Sci., 2011, №15, Р.475-482.
Vlachos A., Müller-Dahlhaus F., Rosskopp J. [et al.]. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J. Neurosci., 2012, Vol. 32, P.17514-17523.
Fujiki M., Kobayashi H., Abe T. [et al.]. Repetitive transcranial magnetic stimulation for protection against delayed neuronal death induced by transient ischemia. J. Neurosurg., 2003, Vol. 99, Р.1063-1069.
Feng H.L., Yan L., Zhou G.Y. [et al.]. Effects of repetitive transcranial magnetic stimulation on adenosine triphosphate content and microtubule associated protein-2 expression after cerebral ischemia-reperfusion injury in rat brain. Chin. Med. J., 2008, №121, Р.1307-1312.
Funamizu H., Ogiue-Ikeda M., Mukai H. [et al.]. Acute repetitive transcranial magnetic stimulation reactivates dopaminergic system in lesion rats. Neurosci. Lett., 2005, №383, Р.77-81.
Ma J., Zhang Z., Su Y. [et al.]. Magnetic stimulation modulates structural synaptic plasticity and regulates BDNF-TrkB signal pathway in cultured hippocampal neurons. Neurochem. Int., 2013, №62, Р.84-91.
Baquet Z.C., Gorski J.A., Jones K.R. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J. Neurosci., 2004, №24(17), Р. 4250–4258.
Yukimasa T., Yoshimura R., Tamagawa A. [et al.]. High-Frequency Repetitive Transcranial Magnetic Stimulation Improves Refractory Depression by Influencing Catecholamine and Brain-Derived Neurotrophic Factors. Pharmacopsychiatry, 2006, № 39(2), Р.52-59.
Angelucci F., Oliviero A., Pilato F. [et al.]. Transcranial magnetic stimulation and BDNF plasma levels in amyotrophic lateral sclerosis. Neuroreport., 2004, Vol.15(4), Р.717-720.
Muller M.B., Toschi N., Kresse A.E. [et al.]. Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology, 2000, № 23, Р.205-215.
Komssi S., Aronen H.J., Huttunen J. [et al.]. Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation. Clin. Neurophysiol., 2001, №113, Р.175-184.
Luber B., Lisanby S.H. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). Neuroimage, 2014, №3, Р. 961-970.