LONG TERM EVOLUTION OF BONE RECONSTRUCTION WITH BONE GRAFT SUBSTITUTES
Abstract
The review involves clinical and experimental data, constitutive modeling, and computational investigations towards an understanding on how mechanical cyclic loads for long periods of time affect damage evolution in a reconstructed bone, as well as, lifetime reduction of bone graft substitutes after advanced core decompression. The outcome of the integrated model discussed in this paper will be how damage growth in femur after advanced core decompression subjected to mechanical cyclic loading under creep and fatigue conditions may be controlled in order to optimize design and processing of bone graft substitutes, and extend lifetime of bone substitutes.
Downloads
References
Madeo A., George D., Rémond Y. (2013). Second-gradient models accounting for some effects of microstructure on remodelling of bones reconstructed with bioresorbable materials. Computer methods in biomechanics and biomedical engineering, 16, 260–261.
Ficat R. P., Arlet J. (1980). Necrosis of the femoral head. In: Ischemia and Necrosis of Bone. Baltimore: Williams & Wilkins, 53–74.
Landgraeber S., Theysohn J. M., Classen T., Jäger M., Warwas S., Hohn H. P., Kowalczyk W. (2013). Advanced core decompression, a new treatment option of avascular necrosis of the femoral head–a first follow-up. Journal of tissue engineering and regenerative medicine, 7(11), 893–900.
Tran T. N., Kowalczyk W., Hohn H. P., Jäger M., Landgraeber S. (2016). Effect of the stiffness of bone substitutes on the biomechanical behaviour of femur for core decompression. Medical engineering & physics, 38(9), 911–916.
Madeo A., George D., Lekszycki T., Nierenberger M., Rémond Y. (2012). A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. Comptes Rendus Mécanique, 340(8), 575–589.
Scala I., Spingarn C., Rémond Y., Madeo A., George D. (2016). Mechanically-driven bone remodeling simulation: Application to LIPUS treated rat calvarial defects. Mathematics and Mechanics of Solids, 1081286516651473.
Burr D. B. (2011). Why bones bend but don’t break. J Musculoskelet Neuronal Interact, 11(4), 270-285.
Mirzaali M. J., Bürki A., Schwiedrzik J., Zysset P. K., Wolfram U. (2015). Continuum damage interactions between tension and compression in osteonal bone. Journal of the mechanical behavior of biomedical materials, 49, 355–369.
Reilly, G. C., Currey, J. D. (1999). The development of microcracking and failure in bone depends on the loading mode to which it is adapted. Journal of Experimental Biology, 202(5), 543–552.
Wolfram, U., Schwiedrzik, J. (2016). Post-yield and failure properties of cortical bone. BoneKEy reports, 5. doi:10.1038/bonekey.2016.60
Zysset P. K., Schwiedrzik J., Wolfram U. (2016). A statistical damage model for bone tissue based on distinct compressive and tensile cracks. Journal of biomechanics, 49(15), 3616–3625.
Seref-Ferlengez Z., Kennedy O. D., Schaffler M. B. (2015). Bone microdamage, remodeling and bone fragility: how much damage is too much damage? BoneKEy reports, 4. doi:10.1038/bonekey.2015.11
Chapurlat R. D., Delmas P. D. (2009). Bone microdamage: a clinical perspective. Osteoporosis international, 20(8), 1299–1308.
Martin R. B., Burr D. B., Sharkey N. A., Fyhrie D. P. (2015). Skeletal Tissue Mechanics. New York: Springer, Second Edition.
Bowman S. M., Keaveny T. M., Gibson L. J., Hayes W. C., McMahon T. A. (1994). Compressive creep behavior of bovine trabecular bone. Journal of biomechanics, 27(3), 301307–305310.
Fondrk M., Bahniuk E., Davy D. T., Michaels C. (1988). Some viscoplastic characteristics of bovine and human cortical bone. Journal of biomechanics, 21(8), 623–630.
Pollintine P., Luo J., Offa-Jones B., Dolan P., Adams M. A. (2009). Bone creep can cause progressive vertebral deformity. Bone, 45(3), 466-472.
Deymier-Black A. C., Yuan F., Singhal A., Almer J. D., Brinson L. C., Dunand D. C. (2012). Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone. Acta biomaterialia, 8(1), 253–261.
Novitskaya E., Zin C., Chang N., Cory E., Chen P., D’Lima D., Sah R. L., McKittrick J. (2014). Creep of trabecular bone from the human proximal tibia. Materials Science and Engineering: C, 40, 219–227.
Caler W. E., Carter D. R. (1989). Bone creep-fatigue damage accumulation. Journal of Biomechanics, 22(6–7), 625–635.
Nilsson, M. K. (2003). Injectable calcium sulphate and calcium phosphate bone substitutes. PhD Theses, Lund University.
Mostakhdemin M., Amiri I. S., Syahrom A. (2015). Multi-axial Fatigue of Trabecular Bone with Respect to Normal Walking. Springer: Singapore.
Carter D. R., Caler W. E., Spengler D. M., Frankel V. H. (1981). Uniaxial fatigue of human cortical bone. The influence of tissue physical characteristics. Journal of Biomechanics, 14(7), 461–470.
Choi K., Goldstein S. A. (1992). A comparison of the fatigue behavior of human trabecular and cortical bone tissue. Journal of biomechanics, 25(12), 1371–1381.
O’Brien F. J., Taylor D., Lee T. C. (2003). Microcrack accumulation at different intervals during fatigue testing of compact bone. Journal of Biomechanics, 36(7), 973–980.
George W. T., Vashishth D. (2005). Damage mechanisms and failure modes of cortical bone under components of physiological loading. Journal of Orthopaedic Research, 23(5), 1047–1053.
Cotton J. R., Zioupos P., Winwood K., & Taylor M. (2003). Analysis of creep strain during tensile fatigue of cortical bone. Journal of biomechanics, 36(7), 943–949.
Moore T. L. A., O’Brien F. J., Gibson L. J. (2004). Creep does not contribute to fatigue in bovine trabecular bone. Transaction of ASME. Journal of Biomechanical Engineering, 126, 321-329.
Dendorfer S., Maier H. J., Hammer J. (2009). Fatigue damage in cancellous bone: an experimental approach from continuum to micro scale. Journal of the mechanical behavior of biomedical materials, 2(1), 113–119.
Haddock S. M., Yeh O. C., Mummaneni P. V., Rosenberg W. S., Keaveny T. M. (2004). Similarity in the fatigue behavior of trabecular bone across site and species. Journal of biomechanics, 37(2), 181–187.
Fatihhi S. J., Rabiatul A. A. R., Harun M. N., Kadir M. R. A., Kamarul T., Syahrom A. (2016). Effect of torsional loading on compressive fatigue behaviour of trabecular bone. Journal of the mechanical behavior of biomedical materials, 54, 21–32.
Winwood K., Zioupos P., Currey J. D., Cotton J. R., Taylor, M. (2006). Strain patterns during tensile, compressive, and shear fatigue of human cortical bone and implications for bone biomechanics. Journal of Biomedical Materials Research Part A, 79(2), 289–297.
Lerebours C., Buenzli P. R. (2016). Towards a cell-based mechanostat theory of bone: the need to account for osteocyte desensitisation and osteocyte replacement. Journal of Biomechanics, 49(13), 2600–2606.
Buganza Tepole A., Kuhl E. (2016). Computational modeling of chemo-bio-mechanical coupling: a systems-biology approach toward wound healing. Computer methods in biomechanics and biomedical engineering, 19(1), 13–30.
Lerebours C., Buenzli P. R., Scheiner S., Pivonka P. (2016). A multiscale mechanobiological model of bone remodelling predicts site-specific bone loss in the femur during osteoporosis and mechanical disuse. Biomechanics and modeling in mechanobiology, 15(1), 43–67.
Buenzli P. R. (2016). Governing equations of tissue modelling and remodelling: A unified generalised description of surface and bulk balance. Plos one, 11(4), e0152582.
Hambli R. (2014). Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling. Frontiers in bioengineering and biotechnology, 2(6), 1–12.37.
Komarova S. V., Smith R. J., Dixon S. J., Sims S. M., Wahl L. M. (2003). Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone modelling. Bone 33, 206–215.
Altenbach H., Altenbach J., Zolochevsky A. (1995). Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Stuttgart: Deutsher Verlag für Grundstoffindustrie, 172S.
Zolochevsky A., Martynenko A., Kühhorn A. (2012). Structural benchmark creep and creep damage testing for finite element analysis with material tension–compression asymmetry and symmetry. Computers and Structures 100–101, 27–38.
Schmitt M., Allena R., Schouman T., Frasca S., Collombet J. M., Holy X., Rouch P. (2016). Diffusion model to describe osteogenesis within a porous titanium scaffold. Computer methods in biomechanics and biomedical engineering, 19(2), 171–179.
Copyright (c) 2017 The Journal of V. N. Karazin Kharkiv National University, series "Medicine"
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Journal of V. N. Karazin Kharkiv National University, series Medicine has following copyright terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work’s authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal’s published version of the work, with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.