The Kharitonov theorem and robust stabilization via orthogonal polynomials
Abstract
Kharitonov’s theorem for interval polynomials is given in terms of orthogonal polynomials on $[0, +\infty )$ and their second kind polynomials. A family of robust stabilizing controls for the canonical system is proposed.
Downloads
References
F.V. Atkinson, Discrete and continuous boundary problems (Russian translation), 1964. – Mir, Moscow. – 750 p.
Bandyopadhyay B., Sreeram V., Shingare P., Stable γ − δ Routh approximation of interval systems using Kharitonov polynomials. // International Journal of Information and Systems Sciences, 1996. – 6(4). –P. 1–12.
S.P. Bhattacharyya, H. Chapellat and L.H. Keel, Robust control. The parametric approach, 1995.– Prentice–Hall. – 672 p.
Brunovsky P., A classification of lineal controllable systems. // Kybernetika, 1970. – 6. – P. 176–188.
T.S. Chihara, An introduction to orthogonal polynomials (Mathematics and its Applications), 1978. – Dover Publications, INC, New York. – 249 p.
Choque Rivero A.E., On Dyukarev’s resolvent matrix for a truncated Stieltjes matrix moment problem under the view of orthogonal matrix polynomials. // Linear Algebra Appl., 2015. – 474. – P. 44–109.
Choque Rivero A.E., From the Potapov to the Krein-Nudel’man representation of the resolvent matrix of the truncated Hausdorff matrix moment problem. // Bol. Soc. Mat. Mexicana, 2015. – 21(2). – P. 233–259.
Choque Rivero A.E., On matrix Hurwitz type polynomials and their interrelations to Stieltjes positive definite sequences and orthogonal matrix
polynomials. // Linear Algebra Appl., 2015. – 476. – P. 56–84.
Choque Rivero A.E., Orthogonal polynomials and Hurwitz polynomials generated by Routh-Markov parameters. // Submitted to Mediterr. J. Math.,
2017. – P. 1–16.
Choque Rivero A.E., On the solution set of the admissible control problem via orthogonal polynomials, // IEEE Trans. Autom. Control, 2017. – 62(10).
– P. 5213–5219.
Choque-Rivero A.E., Gonz´alez Hern´andez O.F., Stabilization via orthogonal polynomials, to appear in IEEE Xplore, 2017 IEEE International Autumn
Meeting on Power, Electronics and Computing (ROPEC 2017), Ixtapa, M´exico, 2017. – P. 1–4.
Choque Rivero A.E., Karlovich Yu., The time optimal control as an interpolation problem, // Commun. Math. Anal., 2011. – 3. – P. 1–11.
Choque Rivero A.E., Korobov V.I., Skoryk V.O., Controllability function as time of motion. I, (in Russian) // Mat. Fiz. Anal. Geom., 2004. – 11(2). –
P. 208–225. English translation in arxiv.org/abs/1509.05127.
Choque Rivero A.E., Korobov V.I., Skylar G.M., The admissible control problem from the moment problem point of view, // Appl. Math. Lett., 2010.
– 23(1). – P. 58–63.
Dyukarev Yu.M., The Stieltjes matrix moment problem, // Deposited in VINITI (Moscow) at 22.03.81, No. 2628-81, 37 p.
Dyukarev Yu.M., A general scheme for solving interpolation problems in the Stieltjes class that is based on consistent representations of pairs of
nonnegative operators. I. (Russian) // Mat. Fiz. Anal. Geom., 1999. – 6. – P. 30–54.
Dyukarev Yu.M., Indeterminacy criteria for the Stieltjes matrix moment problem, // Math. Notes, 2004. – 75(1-2). – P. 66–82.
T.A. Ezangina, S.A. Gayvoronskiy, S.V. Efimov, Construction of robustly stable interval polynomial, Mechatronics Engineering and Electrical Engineering, 2015. – Sheng (Ed.) Taylor and Francis Group.
F.R. Gantmacher, Matrix Theory, Vol. 2, 1959. AMS Chelsea Publishing, 276 p.
Hern´andez V.M., Sira-Ram´irez H., On the robustness of generalized pi control with respect to parametric uncertainties, // European Control Conference, 2003. – P. 1–6.
Hollot C.V., Kharitonov-like results in the space of Markov parameters // IEEE Trans. Autom. Control, 1989. – 34(5). – P. 536–538.
Hurwitz A., Uber die Bedingungen unter welchen eine Gleichung nur Wurzeln ¨mit negativen reellen Teilen besitzt, // Math. Ann., 1895. – 46. – P. 273–284.
Karlin S. and Shapley L.S., Geometry of reduced moment spaces // Proc. Natl. Acad. Sci. USA, 1949. – 35(12). – P. 673—677.
Kawamura T., Shima M., Robust stability analysis of characteristic polynomials whose coefficients are polynomials of interval parameters, // J.
Math. Syst. Est. Control, 1996. – 6(4). – P. 1–12.
Kharitonov V.L., Asymptotic stability of an equilibrium position of a family of systems of linear differential equations. // Diff. Eq., 1979. – 14. – P. 1483–
1485.
Korobov V.I., A general approach to the solution of the problem of synthesizing bounded controls in a control problem, // Mat. Sb., 1979. – 109(151). – P. 582–606.
V.I. Korobov, Controllability function method, 2007. NITS, Inst. Comp. Research, M-Ighevsk.
M.G. Krein and A.A. Nudel’man , The Markov moment problem and extremal problems (Translations of Mathematical Monographs, vol. 50) Providence, 1977. – American Mathematical Society. – 417 p.
L. Lindtr¨on, Signal filtering using orthogonal polynomials and removal of edge effects, 2007. – US7221975B2.
R.E. Moore, R.B. Kearfott, M.J. Cloud, Introduction to interval analysis, 2009. – SIAM. Philadelphia. – 223 p.
Sandryhaila A., Kovaˇcevi´c J., P¨uschel M., Algebraic signal precessing theory: 1-D nearest neighbor models, // IEEE Trans. Signal Process, 2012. – 60(5).
– P. 2247–2259.
Strebel O., A preprocessing method for parameter estimation in ordinary differential equations, // Chaos, Solitons and Fractals, 2013. – 57. – P. 93–
104.
M.M. Postnikov, Stable polynomials (in Russian), 1981. – Nauka, Moscow.
Pulch R., Polynomials chaos for linear differential algebraic equations with random parameters, // International Journal for Uncertainty Quantification, 2011. – bf 1(3). – P. 223–240.
G. Rigatos, Nonlinear control and filtering using differential flatness theory approaches: Applications to electromechical systems, 2015. – Springer.
E.D. Sontag, Mathematical control theory: deterministic finite-dimensional systems, 1998. – Revised 2nd edition. – Springer.
Stojanovi´c N., Stamenkovi´c N., Zivaljevi´c D., Monotonic, critical monotonic, ˇand nearly monotonic low-pass filters designed by using the parity relation for Jacobi polynomials, // Int. J. Circ., 2017. – 12. – P. 1978–1992. DOI: 10.1002/cta.2375
G. Szeg˝o, Orthogonal polynomials, 1975. – Amer. Math. Soc. Colloq. Publ. Series. Vol. 23, Amer. Math. Soc., Providence, Rhode Island, 4th edition.
Ovseevich A., A local feedback control bringing a linear system to equilibrium, // J. Optim. Theory Appl., 2015. – 165(2). – P. 532–544.
Patil D.U., Chakraboty D., Computation of time optimal feedback control using Groebner basis, // IEEE Trans. Control, 2014. – 59(8). – P. 2271–2276.
Polyakov A., Efimov D., and Perruquetti W., Finite-time stabilization using implicit Lyapunov function technique, // IFAC Proceedings, 2013. – 46(23).
– P. 140–145.
Valent G., Van Assche W., The impact of Stieltjes’ work on continued fractions and orthogonal polynomials: additional material, // J. Comput.
Appl. Math., 1995. – 65. – P. 419–447.
Walther U., Georgiou T.T., and Tannenbaum A., On the computation of switching surfaces in optimal control: A Gr¨oner basis approach, // IEEE
Trans. Control, 2001. – 46(4). – P. 534–540.
Copyright (c) 2018 Abdon E. Choque-Rivero
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The copyright holder is the author.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. (Attribution-Noncommercial-No Derivative Works licence).
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).