A Multiplicative Representation of the Resolvent Matrix of the Truncated Hausdorff Matrix Moment Problem via New Dyukarev-Stieltjes Parameters.
Abstract
A new multiplicative decomposition of the resolvent matrix of the truncated Hausdorff matrix moment (THMM) problem in the case of an odd and even number of moments via new Dyukarev-Stieltjes matrix (DSM) parameters is attained. Additionally, we derive Blaschke-Potapov factors of auxiliary resolvent matrices; each factor is decomposed with the help of the DSM parameters.Downloads
References
Choque Rivero A.E., The resolvent matrix for the matricial Hausdorff moment problem expressed by orthogonal matrix polynomials, / Complex Anal. Oper. Theory, 2013. – 7(4). – P. 927–944.
Choque Rivero A.E., Decompositions of the Blaschke-Potapov factors of the truncated Hausdorff matrix moment problem. The case of odd number of moments, / Commun. Math. Anal., 2014. – 17(2). – P. 66–81.
Choque Rivero A.E., Decompositions of the Blaschke-Potapov factors of the truncated Hausdorff matrix moment problem. The case of even number of moments, / Commun. Math. Anal., – 2014. – 17(2). – P. 82–97.
Choque Rivero A.E., From the Potapov to the Krein-Nudel’man
representation of the resolvent matrix of the truncated Hausdorff matrix moment problem, / Bol. Soc. Mat. Mexicana, 2015. – 21(2). – P. 233–259.
Choque Rivero A.E., On Dyukarev’s resolvent matrix for a truncated Stieltjes matrix moment problem under the view of orthogonal matrix polynomials, / Lin. Alg. and Appl., 2015. – 474. – P. 44–109.
Choque Rivero A.E., On matrix Hurwitz type polynomials and their interrelations to Stieltjes positive definite sequences and orthogonal matrix polynomials, / Lin. Alg. and Appl., 2015. – 476. – P. 56–84.
Choque Rivero A.E., Dyukarev-Stieljtes parameters of the truncated Hausdorff matrix moment problem, / Boletin Soc. Mat. Mexicana, 2016. – P. 1–28. DOI: 10.1007/s40590-015-0083-5.
Choque Rivero A.E., Dyukarev Yu.M., Fritzsche B. and Kirstein B., A truncated matricial moment problem on a finite interval. The case of an odd number of prescribed moments, / System Theory, Schur Algorithm and Multidimensional Analysis. Oper. Theory: Adv. Appl., 2007. – 176. – P. 99–174.
Choque Rivero A.E., Dyukarev Yu.M., Fritzsche B. and Kirstein B., A truncated matricial moment problem on a finite interval. // Interpolation, Schur Functions and Moment Problems. Oper. Theory: Adv. Appl., 2006. – 165. – P. 121–173.
Choque Rivero A.E., Garza L.E, Moment perturbation of matrix polynomials, / Integral Transforms Spec. Funct., 2015. – 26. – P. 177–191.
Choque Rivero A.E., M¨adler C., On Hankel positive definite perturbations of Hankel positive definite sequences and interrelations to orthogonal matrix polynomials, / Complex Anal. Oper. Theory, 2014. – 8(8). – P. 121–173.
Choque Rivero A.E., M¨adler C., On resolvent matrix, Dyukarev–Stieltjes parameters and orthogonal matrix polynomials via [0, +∞)-Stieltjes transformed sequences, / Complex Anal. Oper. Theory, 2017. – P. 1–44, DOI
10.1007/s11785-017-0655-7.
Choque Rivero A.E., Zagorodnyuk S., An algorithm for the truncated matrix Hausdorff moment problem, / Commun. Math. Anal., 2014. – 17(2). – P. 108–130.
Damanik D., Pushnitski A. and Simon B., The analytic theory of matrix orthogonal polynomials, / Surv. Approx. Theory, 2008. – 4. – P. 1–85.
Dette H., Studden W.J., Matrix measures, moment spaces and Favard’s theorem on the interval [0, 1] and [0, ∞), / Lin. Alg. and Appl., 2002. – 345. – P. 169–193.
Duran A., Markov’s theorem for orthogonal matrix polynomials, / Can. J. Math., 1996. – 48(6). – P. 1180–1195.
Dur´an A.J., Rodrigues’s formulas for orthogonal matrix polynomials satisfying higher-order differential equations, / Exp. Math., 2011. – 20(1). – P. 15–24.
Dur´an A.J., Gr¨unbaum F.A., Matrix differential equations and scalarpolynomials satisfying higher order recursions, / J. Math. Anal. Appl., 2009. – 354. – P. 1–11.
Dur´an A.J., De la Iglesia M.D., Some examples of orthogonal matrix polynomials satisfying odd order differential equations, / J. Approx. Theory, 2008. – 150. – P. 153–174.
Dur´an A.J., L´opez–Rodr´iguez P., Structural formulas for orthogonal matrix polynomials satisfying second order differential equations, II, / Constr. Approx., 2007. – 26(1). – P. 29–47.
Dym H., On Hermitian block Hankel matrices, matrix polynomials, the Hamburger moment problem, interpolation and maximum entropy, / Integral Equations and Operator Theory, 1989. – 12. – P. 757–812.
Dyukarev Yu.M., The multiplicative structure of resolvent matrices of interpolation problems in the Stieltjes class, / Vestnik Kharkov Univ. Ser. Mat. Prikl. Mat. i Mekh., 1999. – 458. – P. 143–153.
Dyukarev Yu.M., Factorization of operator functions of multiplicative Stieltjes class (Russian), / Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh., 2000. – 9. – P. 23–26.
Dyukarev Yu.M., Indeterminacy criteria for the Stieltjes matrix moment problem, / Math. Notes, 2004. – 75(1-2). – P. 66–82.
Dyukarev Yu.M., Indeterminacy of interpolation problems in the Stieltjes class, Math. Sb., 2005. – 196(3). – P. 61–88.
Dyukarev Yu.M., A Generalized Stieltjes Criterion for the Complete Indeterminacy of Interpolation Problems, / Math. Notes, 2008. – 84(1). –P. 23–39.
Dyukarev Yu.M., Criterion for complete indeterminacy of limiting interpolation problem of Stieltjes type in terms of orthonormal matrix functions, / Russian Mathematics (Iz. VUZ), 2015. – 59(4). – P. 61–88.
Dyukarev Yu.M., Geometric and operator measures of degeneracy for the set of solutions to the Stieltjes matrix moment problem, Mat. Sb., 2016. – 207(4). – P. 47–64.
Dyukarev Yu.M. ,Choque Rivero A.E., Power moment problem on compact intervals, / Mat. Sb., 2001. – 69(1-2). – P. 175–187.
Dyukarev Yu.M. ,Choque Rivero A.E., A matrix version of one Hamburger theorem, / Mat. Sb., 2012. – 91(4). – P. 522–529.
Dyukarev Yu.M., Serikova I.Yu., Complete indeterminacy of the Nevanlinna Pick problem in the class S[a,b], / Russian Math. (Iz. VUZ), 2007. – 51(11). – P. 17–29.
Dyukarev Yu.M., Serikova I.Yu., Step-by-step solving of ordered interpolational problem for Stieltjes functions, / Russian Math. (Iz.VUZ), 2017. – 6. – P. 18–32.
Fritzsche B., Kirstein B., M¨adler C., On Hankel nonegative definite sequences, the canonical Hankel parametrization, and orthogonal matrix polynomials, / Compl. Anal. Oper. Theory, 2011. – 5(2). – P. 447–511.
Fritzsche B., Kirstein B., M¨adler C., Transformations of matricial α-Stieltjes non-negative definite sequences, / Lin. Alg. and Appl., 2013. – 439. – P. 3893–3933.
Geronimo J.S., Scattering theory and matrix orthogonal polynomials on the real line, / Circuits Systems Sigmal Process, 1982. – 1(3-4). – P. 471–495.
I.V. Kovalishina, New aspects of the classical moment problems. Second doctoral thesis (in Russian), 1986. – Institute of Railway-Transport Engineers.
Kovalishina I.V., Analytic theory of a class of interpolation problems, / Izv. Math., 1983. – 47(3). – P. 455–497.
Krein M.G., Fundamental aspects of the representation theory of hermitian operators with deficiency (m, m), / Ukrain. Mat. Zh., 1949. – 1(2). – P. 3–66.
Krein M.G., Infinite J-matrices and a matrix moment problem, / Dokl. Akad. Nauk, 1949. – 69(2). – P. 125–128.
Miranian L., Matrix-valued orthogonal polynomials on the real line: some extensions of the classical theory, / J. Phys. A: Math. Gen., 2005. – 38. –P. 5731–5749.
Potapov V.P., The multiplicative structure of J-nonexpansive matrix functions, / Trudy Moskov. Mat. Ob., 1955. – 4. – P. 125–236.
Serikova I. Yu., Indeterminacy criteria for the Nevanlinna-Pick interpolation problem in class R[a, b], / Zb. Pr. Inst. Mat. NAN Ukr., 2006. – 3(4). – P. 126–142.
Simon B., The classical problem as a self-adjoint finite difference operator, / Adv. Math., 1998. – 137. – P. 82–203.
Sinap A., Van Assche W., Orthogonal matrix polynomials and applications, / J. Comput. Appl. Math., 1996. – 66(1-2). – P. 27–52.
H. Thiele, Beitr¨age zu matriziellen otenzmomentenproblemen, PhD Thesis, 2006. – Leipzig University.
Zagorodnyuk S., The truncated matrix Hausdorff moment problem, / Methods Appl. Anal., 2012. – 19(1). – P. 021–042.
The copyright holder is the author.
Authors who publish with this journal agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal. (Attribution-Noncommercial-No Derivative Works licence).
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (see The Effect of Open Access).