Застосування теорії арбітражного ціноутворення на основі Гаусівського часово-факторного аналізу (ЧФА) для прогнозування цін на криптовалюти
Анотація
У дослідженні продемонстровано, як модель Гаусівського TFA може бути застосована для прогнозування цін на криптовалюти. Розглянуто чотири підходи Розширеної Нормалізованої Радіальної Базисної Функції (ENRBF): N-адаптивна ENRBF, S-адаптивна ENRBF, ICA-ENRBF та ENRBF на основі APT-TFA, які використовуються для одночасового прогнозування ціни закриття чотирьох криптовалют (BTC, ETH, XRP і SOL) на фінансових ринках. Ми оцінили й порівняли ефективність запропонованих моделей, використовуючи звичайну середньоквадратичну помилку (RMSE) на щоденних даних за період з 1 січня 2020 року по 31 грудня 2024 року. Результати показали, що метод APT-TFA-ENRBF стабільно перевершував інші моделі, демонструючи найвищу точність прогнозування у зворотних і прямих інтервалах за найменшою RMSE. Це вказує на послідовну перевагу підходу APT-TFA-ENRBF над трьома іншими традиційними методами. Крім того, було встановлено, що метод ICA-ENRBF показав другий найкращий результат, тоді як N-ENRBF виявився найгіршим за ефективністю. Через те, що дослідження не враховує вплив інших чинників, які можуть суттєво впливати на прогнозування цін, ми рекомендуємо, аби майбутні дослідження зосередилися на глибшому вивченні гібридних методів, які дозволяють аналізувати ці чинники.
Завантаження
Посилання
Pintelas, E., Livieris, I.E., Stavroyiannis, S., Kotsilieris, T., Pintelas, P. (2020). Investigating the Problem of Cryptocurrency Price Prediction: A Deep Learning Approach. In: Maglogiannis, I., Iliadis, L., Pimenidis, E. (eds) Artificial Intelligence Applications and Innovations. AIAI 2020. IFIP Advances in Information and Communication Technology, 584. Springer, Cham. https://doi.org/10.1007/978-3-030-49186-4_9
CoinDesk. (2021). 2021 Annual Crypto Review. CoinDesk Research. Retrieved from https://downloads.coindesk.com/research/2021-annual-crypto-review-coindesk-research.pdf
Munim, Z. H., Shakil, M. H., & Alon, I. (2019). Next-Day Bitcoin Price Forecast. Journal of Risk and Financial Management, 12(2), 103. https://doi.org/10.3390/jrfm12020103
Chen, Z., Li, C., & Sun, W. (2020). Bitcoin price prediction using machine learning: An approach to sample dimension engineering. Journal of Computational and Applied Mathematics, 365, 112395. https://doi.org/10.1016/j.cam.2019.112395
White, H. (1988). Economic prediction using neural networks: The case of ibm daily stock returns. IEEE Int. Conf. on Neural Networks.
Schoneburg, E. (1990). Stock prediction using neural networks. Neurocomputing, 2, 17–27.
Refenes, A.N., Azema-Barac, M., Zapranis, A.D. (1993). Stock ranking: Neural networks vs multiple linear regression. IEEE Int. Conf. on Neural Networks 3: 1419–1426.
Sagar, V.K., Lee, C.K. (1999). A neural stock price predictor using qualitative and quantitative data. Proc. of 6th Int. Conf. on Neural Information Processing, 2, 831–835.
Giles, C.L., Lawrence, S., Tsoi, A.C. (1997). Rule inference for financial prediction using recurrent neural networks. Proc. of IEEE/IAFE Conf. of Comput. Intell. for Fin. Eng, 253–259
Pantazopoulos, K.N., et al. (1998). Financial prediction and trading stragegies using neurofuzzy approaches. IEEE Trans. on Systems, Man and Cybernetics, 28, 520–531.
Xu, L. (1998). RBF nets, mixture experts, and Bayesian Ying-Yang learning. Neurocomputing, 19, 223–257.
Kliber, A., Marszałek, P., Musiałkowska, I., & Świerczyńska, K. (2019). Bitcoin: Safe haven, hedge or diversifier? Perception of bitcoin in the context of a country’s economic situation – A stochastic volatility approach. Physica A: Statistical Mechanics and its Applications, 524, 246–257. https://doi.org/10.1016/j.physa.2019.04.145
Caporale, G. M., Gil-Alana, L., & Plastun, A. (2018). Persistence in the cryptocurrency market. Research in International Business and Finance, 46, 141–148. http://dx.doi.org/10.1016/j.ribaf.2018.01.002
Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383–417. http://dx.doi.org/10.2307/2325486
Alvo, M., Firuzan, E., & Firuzan, A. (2011). Predictability of Dow Jones Index via chaotic symbolic dynamics. World Applied Sciences Journal, 12(6), 835–839.
Onali, E., & Goddard, J. (2011). Are European equity markets efficient? New evidence from fractal analysis. International Review of Financial Analysis, 20(2), 59–67. http://dx.doi.org/10.1016/j.irfa.2011.02.004
Colon, F., Kim, C., Kim, H., & Kim, W. (2021). The effect of political and economic uncertainty on the cryptocurrency market. Finance Research Letters, 39, Article 101621. http://dx.doi.org/10.1016/j.frl.2020.101621
Rognone, L., Hyde, S., & Zhang, S. S. (2020). News sentiment in the cryptocurrency market: An empirical comparison with forex. International Review of Financial Analysis, 69, Article 101462. http://dx.doi.org/10.1016/j.irfa.2020.101462
Wątorek, M., Skupień, M., Kwapień, J., & Drożdż, S. (2023). Decomposing cryptocur rency high-frequency price dynamics into recurring and noisy components. Chaos. An Interdisciplinary Journal of Nonlinear Science, 33(8), Article 083146.
Xu, L. (2000). Temporal BYY learning for state space approach, hidden markov model and blind source separation. IEEE Trans. on Signal Processing, 48, 2132–2144.
Hung, J., Liu, H., & Yang, J. C. (2020). Improving the realized GARCH’s volatility forecast for Bitcoin with jump-robust estimators. North American Journal of Economics and Finance, 52, 101–165, https://doi.org/10.1016/j.najef.2020.101165
Urquhart, A., (2018) What causes the attention of Bitcoin? Economics Letter, 166, 40–44. https://doi.org/10.1016/j.econlet.2018.02.017
Jang, H., & Lee, J. (2018). An empirical study on modeling and prediction of bitcoin prices with Bayesian neural networks based on blockchain information. IEEE Access, 6, 5427–5437. https://doi.org/10.1109/ACCESS.2017.2779181
Guizani, S., & Nafti I. K. (2019). The determinants of Bitcoin price volatility: an investigation with ARDL Model. Procedia Computer Science, 164, 233–238. https://doi.org/10.1016/j.procs.2019.12.177
Kraaijeveld, O., & De Smedt, J. (2020). The predictive power of public Twitter sentiment for forecasting cryptocurrency prices. Journal of International Financial Markets, Institutions and Money, 65, 101188. https://doi.org/10.1016/j.intfin.2020.101188
Gbadebo, A. D., Adekunle, A. O., Adedokun, W. Lukman, A. A., & Akande, J. O. (2021). BTC price volatility: Fundamentals versus information. Cogent Business & Management, 8(1). https://doi.org/10.1080/23311975.2021.1984624
Jaquart, P., Dann, D., & Weinhardt, C. (2021). Short-term bitcoin market prediction via machine learning. J. of Finance and Data Science, 7, 45–66. https://doi.org/10.1016/j.jfds.2021.03.001
Baur, D., Cahill, D., Godfrey, K., & Liu, Z. (2019). Bitcoin time-of-day, day-of-week and month-of-year effects in returns and trading volume. Finance Res. Letters, 31, 78–92. https://doi.org/10.1016/j.frl.2019.04.023
Gbadebo, A.D., Akande, J.O., & Adekunle, A.O. (2023). Price Prediction for Bitcoin: Does Periodicity Matter? International Journal of Business and Economic Sciences Applied Research, 15(3). https://doi.org/10.25103/ijbesar.153.06
Troster, V., Tiwari, A. K., Shahbaz, M., & Macedo, D. N. (2019). Bitcoin returns and risk: A general GARCH and GAS analysis, 30(C), 187–193. https://doi.org/10.1016/j.frl.2018.09.014
Adekunle, A. O., Gbadebo, A. D., Akande, J.O. Adedokun, M. W. (2022). forecasting with competing models of daily bitcoin price in R. Journal of Studies in Social Sciences and Humanities, 8 (2). Retrieved from http://www.jssshonline.com/jsssh-volume-8-no-2-2022?et_fb=1&PageSpeed=off
Goutte, S., Guesmi, K., & Saadi, S. (2019). Cryptofinance and Mechanisms of Exchange: The Making of Virtual Currency. Springer. https://doi.org/10.1007/978-3-030-30738-7
Zhong, X & Enke, D. (2017). Forecasting daily stock market return using dimensionality reduction. Expert Systems with Applications, 67, 126–39.
Kohli, P. S., Smriti, S., Yog, R.S., & Aamir, A. (2019.) Stock prediction using machine learning algorithms. In Applications of Artificial Intelligence Techniques in Engineering. Singapore: Springer, 1–38.
Zhang, K., Zhong, G., Dong, J., Wang, S., & Wang, Y. (2019). Stock market prediction based on generative adversarial network. Procedia Computer Science, 147, 400–406. https://doi.org/10.1016/j.procs.2019.01.256
Sin, E. & Wang, L. (2017). Bitcoin price prediction using ensembles of neural networks. network based hybrid models: Cnn-lstm, gru-cnn, and ensemble models. Applied Sciences, 13, 4644.
Gradxs, G.P.B. & Rao, N. (2023). Behaviour based credit card fraud detection: Design and analysis by using deep stacked autoencoder based harris grey wolf (hgw) method. Scandinavian Journal of Information Systems, 35, 1–8.
Fanai, H. & Abbasimehr, H. (2023). A novel combined approach based on Deep autoencoder and deep classifiers for credit card fraud detection. Expert Systems with Applications 217: 119562.
Zhao, H., Xinran, L., Jiakai, X., Xianghua, F., & Jiehao, C. (2023). Financial time series data prediction by combination model Adaboost-KNN-LSTM. Paper presented at the 2023 IEEE International Joint Conference on Neural Networks (IJCNN), Gold Coast, Australia, June 18–23, pp. 1–8.
Kwak, N.W. & Dong, H.L. (2021). Financial time series forecasting using adaboost-gru ensemble model. Journal of the Korean Data and Information Science Society, 32, 267–81.
Shen, G., Tan, Q., Zhang, H., Zeng, P., & Xu, J. (2018). Deep Learning with Gated Recurrent Unit Networks for Financial Sequence Predictions. Procedia Computer Science, 131, 895–903. https://doi.org/10.1016/j.procs.2018.04.298
Hossain, M. A., Rezaul, K., Thulasiram, R., Bruce, N. B & Wang, W. (2018). Hybrid deep learning model for stock price prediction. Paper presented at the 2018 IEEE Symposium on Computational Intelligence in Financial Engineering and Economics (CIFEr), Symposium Series on Computational Intelligence, Bangalore, India, November 18–21. pp. 1837–44.
Song, H., & Choi, H. (2023). Forecasting Stock Market Indices Using the Recurrent Neural Network Based Hybrid Models: CNN-LSTM, GRU-CNN, and Ensemble Models. Applied Sciences, 13(7), 4644. https://doi.org/10.3390/app13074644
Awoke, T., Rout, M., Mohanty, L., & Satapathy, S. C. (2021). Bitcoin price prediction and analysis using deep learning models. In Communication software and networks. Springer, 631–640. http://dx.doi.org/10.1007/978-981-15-5397-4_63
Yiying, W., & Yeze, Z. (2019). Cryptocurrency price analysis with artificial intelligence. In 2019 5th international conference on information management (pp. 97–101). http://dx.doi.org/10.1109/INFOMAN.2019.8714700
Xu, L. (2001). BYY harmony learning, independent state space and generalized APT financial analyses. IEEE Transactions on Neural Networks, 12, 822–849.
Chiu, K.C. & Xu, L. (2002). A comparative study of Gaussian TFA learning and statistical tests on the factor number in APT. to appear in Proc. of International Joint Conference on Neural Networks.
Hudson, R. & Gregoriou, A. (2010). Calculating and comparing security returns is harder than you think: a comparison between logarithmic and simple returns. http://dx.doi.org/10.2139/ssrn.1549328
Meucci, A. Quant, N., (2010). Linear vs. Compounded Returns – Common Pitfalls in Portfolio Management”, GARP Risk Professional, 49-51. Retrieved from https://ssrn.com/abstract=1586656
Xu, L., Krzyzak, A. & Oja, E. (1993). Rival penalized competitive learning for clustering analysis, RBF net, and curve detection. IEEE Trans. on Neural Networks, 4, 636–649.
Авторське право (c) 2025 Гбадебо А.Д., Абдулрауф Л.А.

Цю роботу ліцензовано за Міжнародня ліцензія Creative Commons Attribution 4.0.