An integrated framework for modelling the determinants of big data as a service adoption
Abstract
This study investigates the determinants of Big Data as a Service (BDaaS) adoption among organizations operating in data-intensive industries such as finance, healthcare, retail, and logistics in Europe. Guided by an integrated theoretical lens that combines the Technology-Organization-Environment (TOE) framework with Diffusion of Innovations (DOI), Socio-Technical Systems (STS), and Resource-Based View (RBV), the research employs a quantitative, cross-sectional design. Data were collected through structured questionnaires from 327 IT professionals and decision-makers and analysed using Structural Equation modelling (SEM) and logistic regression. The results indicate that technological readiness, organizational capacity, environmental pressure, and human technology fit, significantly influence BDaaS adoption intention and actual implementation. Moreover, organizational capacity mediates the relationship between technological readiness and adoption, while firm size moderates the effect of environmental pressure. These findings offer theoretical contributions to the literature on digital transformation and provide practical and policy insights for fostering BDaaS uptake across sectors.
Downloads
References
Tayal, C. (2025). Performance optimisation in Big Data-as-a-Service (BDaaS) platforms in healthcare systems. International Journal of Engineering Research & Technology (IJERT), 14(10). https://doi.org/10.17577/IJERTV14IS100140
Patrucco, A. S., Marzi, G., & Trabucchi, D. (2023). The role of absorptive capacity and big data analytics in strategic purchasing and supply chain management decisions. Technovation, 126, Article 102814. https://doi.org/10.1016/j.technovation.2023.102814
Alka'Awneh, S. M., Abdul-Halim, H., & Md Saad, N. H. (2025). A review of Diffusion of Innovations theory (DOI) and Technology, Organization, and Environment framework (TOE) in the adoption of artificial intelligence. International Journal of Academic Research in Business and Social Sciences, 15(3). https://doi.org/10.6007/IJARBSS/v15-i3/24804
Nguyen, G. T., Liaw, S.-Y., & Duong, X.-L. (2022). Readiness of SMEs to adopt big data: An empirical study in Vietnam. International J. of Computing and Digital Systems, 12(1). Retrieved from https://pdfs.semanticscholar.org/f1bb/b2049b83e60f8122828f5e1990cf0667cdd0.pdf?utm_source=chatgpt.com
Mustapha, A. (2025). Big Data as a Service in the digital economy: A structural model of adoption, capabilities, and performance. International Journal of Social and Educational Innovation (IJSEIro), 12(24), 261–280. Retrieved from https://journals.aseiacademic.org/index.php/ijsei/article/view/557
Yu, J., Taskin, N., Nguyen, C. P., & Li, J. (2022). Investigating the determinants of big data analytics adoption in decision making: An empirical study in New Zealand, China, and Vietnam. Journal of the Association for Information Systems, 14(4), 62–99. https://doi.org/10.17705/1pais.14403
Sharma, M., Gupta, R., Sehrawat, R., Jain, K., & Dhir, A. (2023). The assessment of factors influencing Big data adoption and firm performance: Evidences from emerging economy. Enterprise Information Systems, 17(12). https://doi.org/10.1080/17517575.2023.2218160
Junior Ladeira, W., De Oliveira Santini, F., Rasul, T., Cheah, I., Elhajjar, S., Yasin, N., & Akhtar, S. (2024). Big data analytics and the use of artificial intelligence in the services industry: a meta-analysis. Service Industries Journal. https://doi.org/10.1080/02642069.2024.2374990
Rana, N. P., Chatterjee, S., Dwivedi, Y. K., & Baabdullah, A. M. (2020). Understanding AI adoption in manufacturing and production firms using an integrated TAM-TOE model. Technological Forecasting and Social Change, 170, Article 120880. https://doi.org/10.1016/j.techfore.2021.120880
Ghaleb, E. A. A., Dominic, P. D. D., Singh, N. S. S., & Naji, G. M. A. (2023). Assessing the Big Data Adoption Readiness Role in Healthcare between Technology Impact Factors and Intention to Adopt Big Data. Sustainability, 15(15), 11521. https://doi.org/10.3390/su151511521
Iqbal, J., Hossain, M. I., Chowdhury, N., Mia, M. S., Biswas, A. (2024). Integrating Cloud Computing, Big Data, and Business Analytics to Determination Digital Transformation and Competitive Advantage in Modern Enterprises, Journal of Primeasia, 5(1),1-8,10380.
Sharma, S. K., Pratap, A., & Dev, H. (2023). Analysis of Various Challenges of Big Data-as-a-Service (BDaaS) and Testing for its Research Aspects. International Journal of Intelligent Systems and Applications in Engineering, 11(9s), 743–749. Retrieved from https://www.ijisae.org/index.php/IJISAE/article/view/3223
Wessels, T., & Jokonya, O. (2022). Factors affecting the adoption of Big Data as a Service in SMEs. Procedia Computer Science. https://doi.org/10.1016/j.procs.2021.12.021
Journal of Big Data. (2025). Big data analytics in healthcare: Current practices, innovations, and future prospects. SpringerOpen. https://doi.org/10.1186/s40537-025-01288-2
Urus, S. T., Rahmat, F., Othman, I. W., Nazri, S. N. F., & Rasit, Z. A. (2024). Application of the Technology-Organization-Environment (TOE) framework on Big Data Analytics deployment in manufacturing and service industries. Asia-Pacific Management Accounting Journal, 19(2). Retrieved from https://ir.uitm.edu.my/id/eprint/105790/
Scholtz, B. M. & Yakobi, K. (2023). The Technology, Organization, and Environment Framework for Social Media Analytics in Government: The Cases of South Africa and Germany," The African Journal of Information Systems: 15: (4). Retrieved from https://digitalcommons.kennesaw.edu/ajis/vol15/iss4/3
Benzidia, S., Bentahar, O., Husson, J., & Makaoui, N. (2023). Big data analytics capability in healthcare operations and supply chain management: The role of green process innovation. Annals of Operations Research. https://doi.org/10.1007/s10479-022-05157-6
Maroufkhani, P., Qadri, M. A., & others. (2020). Big data analytics adoption: Determinants and performance. International Journal of Information Management. https://doi.org/10.1016/j.ijinfomgt.2020.102190
Shahbaz, M., Gao, C., Zhai, L., Shahzad, F., & Hu, Y. (2019). Investigating the adoption of big data analytics in healthcare: the moderating role of resistance to change. J Big Data 6, 6 (2019). https://doi.org/10.1186/s40537-019-0170-y
Shakil, K. A., Zareen, F. J., Alam, M., & Jabin, S. (2017). BAMHealthCloud: A Biometric Authentication and Data Management System for Healthcare Data in Cloud. arXiv. https://doi.org/10.1016/j.jksuci.2017.07.001
Štufi, M., Bačić, B., & Stoimenov, L. (2020). Big Data Architecture in Czech Republic Healthcare Service: Requirements, TPC H Benchmarks and Vertica. arXiv. https://doi.org/10.48550/arXiv.2001.01192
Lutfi, A., Al-Khasawneh, A. L., Almaiah, M. A., Alshira’h, A. F., Alshirah, M. H., Alsyouf, A., Alrawad, M., Al-Khasawneh, A., Saad, M., & Ali, R. A. (2022). Antecedents of Big Data Analytic Adoption and Impacts on Performance: Contingent Effect. Sustainability, 14(23), 15516. https://doi.org/10.3390/su142315516
Babalghaith, R., & Aljarallah, A. (2024). Factors affecting Big Data Analytics adoption in small and medium enterprises. Information Systems Frontiers. https://doi.org/10.1007/s10796-024-10538-2
Walker, R. S., & Brown, I. (2019). Big data analytics adoption: A case study in a large South African telecommunications organisation. South African Journal of Information Management. https://doi.org/10.4102/sajim.v21i1.1079
Hong, S., Xu, Y., Khare, A., Priambada, S., Maher, K., Aljiffry, A., Sun, J., & Tumanov, A. (2020). HOLMES: Health OnLine Model Ensemble Serving for Deep Learning Models in Intensive Care Units. arXiv. https://doi.org/10.48550/arXiv.2008.04063
Olusola, A. A., & others. (2018). Big Data adoption: Theories, framework, opportunities and challenges. African Journal / AJAR. Retrieved from http://ibii-us.org/Journals/AJAR/V2N1/Publish/V2N1_7.pdf
Xu, X., Motta, G., Wang, X., Tu, Z., & Xu, H. (2016). A new paradigm of software service engineering in the era of Big Data and Big Service. arXiv. https://doi.org/10.1007/s00607-018-0602-0
Bruintjies, A. N., & Njenga, J. (2024). Factors affecting Big Data adoption in a government organisation in the Western Cape. South African Journal of Information Management. https://doi.org/10.4102/sajim.v26i1.1690
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly. https://doi.org/10.2307/30036540
Ali, O., Murray, P. A., Muhammed, S., Dwivedi, Y. K., & Rashiti, S. (2022). Evaluating organizational level IT innovation adoption factors among global firms. Journal of Innovation & Knowledge, 7(3), Article 100213. https://doi.org/10.1016/j.jik.2022.100213
Díaz Arancibia, J., Hochstetter Diez, J., Bustamante Mora, A., Sepúlveda Cuevas, S., Albayay, I., & Arango López, J. (2024). Navigating Digital Transformation and Technology Adoption: A Literature Review from Small and Medium Sized Enterprises in Developing Countries. Sustainability, 16(14), 5946. https://doi.org/10.3390/su16145946 MDPI
Jones, J. (2024). Big data analytics in Industry 4.0: A systematic review of use cases, challenges, and future directions. SSRN. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5067663
Khan, I. (2024). A Study of Big Data in Cloud Computing. CAMES Journal, exploring big data and cloud computing challenges. https://doi.org/10.5281/zenodo.1234567.
Lutfi, A., Alsyouf, A., Almaiah, M. A., Alrawad, M., Abdo, A. A. K., Al-Khasawneh, A. L., Ibrahim, N., & Saad, M. (2022). Factors Influencing the Adoption of Big Data Analytics in the Digital Transformation Era: Case Study of Jordanian SMEs. Sustainability, 14(3), 1802. https://doi.org/10.3390/su14031802
Mikalef, P., Krogstie, J., van de Wetering, R., & Pappas, I. (2018). Information governance in the big data era: Aligning organizational capabilities. In Proceedings of the 51st Hawaii International Conference on System Sciences (HICSS). Big Island, Hawaii. https://doi.org/10.24251/HICSS.2018.615
Bernardo, B. M. V., São Mamede, H., Barroso, J. M. P., & Duarte dos Santos, V. M. P. (2024). Data governance & quality management—Innovation and breakthroughs across different fields. Journal of Innovation & Knowledge, 9(4), Article 100598. https://doi.org/10.1016/j.jik.2024.100598
Oyewo, B., Obanor, A., & Iwuanyanwu, C. (2022). Determinants of the adoption of big data analytics in business consulting service: A survey of multinational and indigenous consulting firms. Transnational Corporations Journal. https://doi.org/10.1080/19186444.2022.2044737
Uren, V., & Edwards, J. S. (2023). Technology readiness and the organizational journey towards AI adoption: An empirical study. International Journal of Information Management, 68, Article 102588. https://doi.org/10.1016/j.ijinfomgt.2022.102588
Organisation for Economic Co-operation and Development (OECD). (2023, December 20). Digital public infrastructure for digital governments. OECD Public Governance Policy Papers. Retrieved from https://www.oecd.org/en/publications/digital-public-infrastructure-for-digital-governments_ff525dc8-en.html
Whig, P., Yathiraju, N., Jain, A., Sharma, A., Kautish, S. (2025). Enhancing Organizational Success: A Strategic Approach to Data Quality and Governance. In: Kautish, S., Rocha, Á., Gupta, A., Sawhney, S. (eds) Strategy Analytics for Business Resilience Theories and Practices. Information Systems Engineering and Management, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-031-82369-5_1
World Bank (2022). The World Bank Annual Report 2022: Helping Countries Adapt to a Changing World (English). Washington, D.C. : World Bank Group. Retrieved from http://documents.worldbank.org/curated/en/099030009272214630
Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37(3), 498–505. https://doi.org/10.3758/BF03192720
Copyright (c) 2025 Gbadebo A.D.

This work is licensed under a Creative Commons Attribution 4.0 International License.