Дослідження in silico похідних триазол-триметоксифенілу як антипроліферативних засобів проти аденокарциномних альвеолярних базальних епітеліальних клітин людини (A549): DFT, QSAR та підходи молекулярного докінгу.
Анотація
Двадцять вісім наборів синтезованих похідних триазолтриметоксифенілу (TPD) були розглянуті як антипроліферативні препарати проти ліній ракових клітин альвеолярного базального епітелію людини (A549) за допомогою методів DFT, QSAR, профілю ADMET та молекулярного докінгу. Розглянуті сполуки були використані для розробки надійної моделі QSAR, яка була застосована для розробки нових сполук TPD, що могли б служити кандидатами на антипроліферативні препарати проти раку альвеолярного базального епітелію людини (A549). Параметри, отримані з розрахунків DFT, такі як HOMO, LUMO, дипольний момент, хімічна твердість та м'якість, свідчили про перевагу TPD-11 та TPD‑25 над етопоксидом як сильних інгібіторів проти ракових клітин альвеолярного базального епітелію людини (A549), що узгоджується з експериментальними даними. Моделювання та валідація QSAR показали значний вплив автокореляції Морана - лаг 4/зважений за поляризовністю (MATS4p), автокореляції центрованого Брото-Моро - лаг 7/зважений за зарядами (ATSC7c), дескрипторів мінімального E-стану міцності для потенційних водневих зв'язків довжиною 3 (minHBint3) та дескрипторів кількості E-станів атомного типу: C (naasC) на зареєстровану протиракову активність препаратів у QSAR A549-MLR-GFA (R2 = 0,8146, скоригований R2 = 0,7874, Q2Loo = 0,6015 та
R2 - Q2Loo = 0,2582). Використовуючи дані моделі, було запропоновано чотири нові TPD (NTPD-3, NTPD-4, NTPD-6 та NTPD-9). DFT та молекулярний докінговий аналіз показали, що ці чотири сполуки можуть бути кращими інгібіторами проти A549, ніж етопоксид. Однак, властивості ADMET (абсорбція, розподіл, метаболізм, екскреція та токсичність) показали, що NTPD-6 має чудові фармакокінетичні та токсикологічні профілі та може слугувати дороговказом для нових та ефективніших протипухлинних засобів.
Завантаження
Посилання
Budrevičiūtė, A.; Damiati, S.; Sabir, D.K;, Önder, K.; Schuller-Goetzburg, P.; Plakys, G.; Katileviciute, A.; Khoja, S.M.; Kodzius, R.; Management and Prevention Strategies for Non-communicable Diseases (NCDs) and their risk factors, Frontiers in Public Health. 2020, 8, https://doi.org/10.3389/fpubh.2020.574111.
World Health Organization: WHO, Noncommunicable diseases, 2023. https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases.
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F.; Cancer statistics for the year 2020: An overview, International Journal of Cancer. 2021,149, 778–789. https://doi.org/10.1002/ijc.33588.
Muka, T.; Imo, D.; Jaspers, L.; Colpani, V.; Chaker, L.; Van Der Lee, S.J.; Mendis, S.; Chowdhury, R.; Bramer, W.M.; Falla, A.; Pazoki, R.; Franco, O.H.; The global impact of non-communicable diseases on healthcare spending and national income: a systematic review, European Journal of Epidemiology. 2015, 30, 251–277. https://doi.org/10.1007/s10654-014-9984-2.
Ullrich, A.; Miller, A.B.; Global Response to the Burden of Cancer: The WHO approach, American Society of Clinical Oncology Educational Book. 2014, e311–e315. https://doi.org/10.14694/edbook_am.2014.34.e311.
Nikolaou, M.; Pavlopoulou, A.; Georgakilas, A.G.; Kyrodimos, E.; The challenge of drug resistance in cancer treatment: a current overview, Clinical & Experimental Metastasis. 2018, 35, 309–318. https://doi.org/10.1007/s10585-018-9903-0.
Özkan, S.A.; Advances in Medicinal Chemistry from Analytical Perspectives, Current Medicinal Chemistry. 2018, 25 3954–3955.
Palve, V.; Liao, Y.W.; Rix, L.; Rix, U.; Turning liabilities into opportunities: Off-target based drug repurposing in cancer, Seminars in Cancer Biology. 2021, 68, 209–229. https://doi.org/10.1016/j.semcancer.2020.02.003.
Fu, D.-J.; Yang, J.; Li, P.; Hou, Y.; Huang, S.; Tippin, M.; Pham, V.; Song, L.; Zi, X.; Xue, W.; Zhang, L.; Zhang, S.; Bioactive heterocycles containing a 3,4,5-trimethoxyphenyl fragment exerting potent antiproliferative activity through microtubule destabilization, European Journal of Medicinal Chemistry. 2018, 157, 50–61. https://doi.org/10.1016/j.ejmech.2018.07.060.
Lang, D.K.; Kaur, R.; Arora, R.; Saini, B.; Arora, S.; Nitrogen-Containing heterocycles as Anticancer agents: An Overview, Anti-Cancer Agents in Medicinal Chemistry. 2020, 20, 2150–2168.
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B.; A review on recent advances in Nitrogen-Containing molecules and their biological applications, Molecules. 2020, 25, 1909. https://doi.org/10.3390/molecules25081909.
Al-Bayati, A.I.; Mahmood, A. A. R.; Tahtamouni, L.H.; Al-Mazaydeh, Z.A.; Rammaha, M.S.; Al-Bayati, R.I.; Alsoubani, F.; WITHDRAWN: Synthesis, docking study, and in-vitro anti-cancer evaluation of new triazole derivatives of flufenamic. https://doi.org/10.1016/j.matpr.2021.05.317. acid, Materials Today: Proceedings. 2021
Zhao, S.; Liu, J.; Lv, Z.; Zhang, G.; Xu, Z.; Recent updates on 1,2,3-triazole-containing hybrids with in vivo therapeutic potential against cancers: A mini-review, European Journal of Medicinal Chemistry. 2023, 251, 115254. https://doi.org/10.1016/j.ejmech.2023.115254.
Grytsai, O.; Valiashko, O.; Penco-Campillo, M.; Dufies, M.; Hagege, A.; Demange, L.; Martial, S.; Pagès, G.; Ronco, C.; Benhida, R.; Synthesis and biological evaluation of 3-amino-1,2,4-triazole derivatives as potential anticancer compounds, Bioorganic Chemistry. 2020, 104, 104271. https://doi.org/10.1016/j.bioorg.2020.104271.
Chu, X.; Wang, C.; Wang, W.; Liang, L.; Liu, W.; Gong, K.; Sun, K.; Triazole derivatives and their antiplasmodial and antimalarial activities, European Journal of Medicinal Chemistry. 2019, 166, 206–223. https://doi.org/10.1016/j.ejmech.2019.01.047.
Peyton, L.; Gallagher, S.; Hashemzadeh, M.; Triazole antifungals: A review, Drugs of Today. 2015, 51, 705. https://doi.org/10.1358/dot.2015.51.12.2421058.
El‐Sebaey, S.A.; Recent advances in 1,2,4‐Triazole scaffolds as antiviral agents, ChemistrySelect. 2020, 5, 11654–11680. https://doi.org/10.1002/slct.202002830.
Shaikh, S.; Nazam, N.; Rizvi, S.M.D.; Ahmad, K.; Baig, M.H.; Lee, E.J.; Choi, I.; Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance, International Journal of Molecular Sciences. 2019, 20, 2468. https://doi.org/10.3390/ijms20102468.
Zhang, Y.; Wu, C.; Zhang, N.; Fan, R.; Ye, Y.; Xu, J.; Recent Advances in the Development of Pyrazole Derivatives as Anticancer Agents. Int J Mol Sci. 2023, 24 (16):12724. doi: 10.3390/ijms241612724.
Bhogireddy, D.Nayudu.; Kotala, M. B.; Aduri, R.; Somaiah, N.; Tadiboina, B.R.; Design, synthesis and anticancer assessment of 1,2,3-triazole incorporated 1,3,4-oxadiazole-quinazoline derivatives, Chemical Data Collections 2023, 48,101073,https://doi.org/10.1016/j.cdc.2023.101073.
Ahmad, M.K.; Abdollah, N.A.; Shafie, N.H.; Yusof, N.M.; Razak, S.R.A.; Dual-specificity phosphatase 6 (DUSP6): a review of its molecular characteristics and clinical relevance in cancer, Cancer Biology and Medicine. 2018, 15, 14. https://doi.org/10.20892/j.issn.2095-3941.2017.0107.
Djemoui, A.; Naouri, A.; Ouahrani, M.R.; Djemoui, D.; Souli, L.; Lahrech, M.; Boukenna, L.; Albuquerque, H.M.T.; Saher, L.; Rocha, D.H.A.; Monteiro, F.L.; Helguero, L.A.; Bachari, K.; Talhi, O.; Silva, A.M.S.; A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: Anticancer activity in human cells+, Journal of Molecular Structure. 2020, 1204, 127487. https://doi.org/10.1016/j.molstruc.2019.127487.
Banerji, A.; Chandrasekhar, K.; Sreenath, K.; Roy, S.; Nag, S.; Saha, K.D.; Synthesis of Triazole-Substituted quinazoline hybrids for anticancer activity and a lead compound as the EGFR blocker and ROS inducer agent, ACS Omega. 2018, 3, 16134–16142. https://doi.org/10.1021/acsomega.8b01960.
Perike, N.; Edigi, P.K.; Gurrapu, N.; Thumma, V.; Bujji, S.; Naikal, P.S.; Synthesis, anticancer activity and molecular docking studies of hybrid molecules containing Indole‐Thiazolidinedione‐Triazole moieties, ChemistrySelect. 2022, 7, https://doi.org/10.1002/slct.202203778.
Patil, S.A.; Nesaragi, A.R.; Rodríguez-Berrios, R.R.; Hampton, S.M.; Bugarin, A.; Patil, S.A;. Coumarin Triazoles as Potential Antimicrobial Agents. Antibiotics (Basel). 2023 12, 160. doi: 10.3390/antibiotics12010160.
Cebeci, Y.U.; Ceylan, S.; Karaoglu, S.A.; Altun, M.; An efficient microwave-assisted synthesis of novel quinolone–triazole and conazole–triazole hybrid derivatives as antimicrobial and anticancer agents. Jouranl of Heterocyclic Cheimstry 2023, 60, 47-62. https://doi.org/10.1002/jhet.4560
Becan, L.; Pyra, A.; Rembiałkowska, N.; Bryndal, I. Synthesis, Structural Characterization and Anticancer Activity of New 5-Trifluoromethyl-2-thioxo-thiazolo[4,5-d]pyrimidine Derivatives. Pharmaceuticals 2022, 15, 92. https://doi.org/10.3390/ph15010092.
Oyebamiji, A.K., Semire, B.; In Vitro Biological Estimation of 1,2,3-Triazolo[4,5-d]pyrimidine Derivatives as Anti-breast Cancer Agent: DFT, QSAR and Docking Studies, Current Pharmaceutical Biotechnology. 2020, 21, 70–78. https://doi.org/10.2174/1389201020666190904163003.
Kumar, A.; Singh, A.K.; Singh, H.; Vijayan, V.; Kumar, D.; Naik, J.; Thareja, S.; Yadav, J.P.; Pathak, P.; Grishina, M.; Verma, A.; Khalilullah, H.; Jaremko, M.; Emwas, A.H.; Kumar, P.; Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals (Basel). 2023, 16(2):299. doi: 10.3390/ph16020299.
Oyebamiji, A.K.; Tolufashe, G.F.; Oyawoye, O.M.; Oyedepo, T.A.; Semire, B.; Biological Activity of Selected Compounds from Annona muricata Seed as Antibreast Cancer Agents: Theoretical Study, Journal of Chemistry. 2020, 1–10. https://doi.org/10.1155/2020/6735232.
Lü, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D.; An Overview of Tubulin Inhibitors That Interact with the Colchicine Binding Site, Pharmaceutical Research. 2012, 29, 2943–2971. https://doi.org/10.1007/s11095-012-0828-z.
Negi, A.S.; Gautam, Y.; Alam, S.; Chanda, D.; Luqman, S.; Sarkar, J.; Konwar, R.; Natural antitubulin agents: Importance of 3,4,5-trimethoxyphenyl fragment, Bioorganic & Medicinal Chemistry. 2015, 23, 373–389. https://doi.org/10.1016/j.bmc.2014.12.027.
Romagnoli, R.; Baraldi, P.G.; Prencipe, F.; Oliva, P.; Baraldi, S.; Salvador, M.K.; Cara, C.L.; Bortolozzi, R.; Mattiuzzo, E.; Basso, G.; Viola, G.; Design, synthesis and biological evaluation of 3-substituted-2-oxindole hybrid derivatives as novel anticancer agents, European Journal of Medicinal Chemistry. 2017, 134, 258–270. https://doi.org/10.1016/j.ejmech.2017.03.089.
Banimustafa, M.; Kheirollahi, A.; Safavi, M.; Ardestani, S.K.; Aryapour, H.; Foroumadi, A.; Emami, S.; Synthesis and biological evaluation of 3-(trimethoxyphenyl)-2(3H)-thiazole thiones as combretastatin analogs, European Journal of Medicinal Chemistry. 2013, 70, 692–702. https://doi.org/10.1016/j.ejmech.2013.10.046.
Ansari, M.; Shokrzadeh, M.; Karima, S.; Rajaei, S.; Hashemi, S.M.; Mirzaei, H.; Fallah, M.; Emami, S.; Design, synthesis and biological evaluation of flexible and rigid analogs of 4H-1,2,4-triazoles bearing 3,4,5-trimethoxyphenyl moiety as new antiproliferative agents, Bioorganic Chemistry. 2019, 93, 103300. https://doi.org/10.1016/j.bioorg.2019.103300.
Semire, B.; Odunola, O.A.; Density Functional Theory (DFT) Study on α,α-Bis(2-benzothiophen-1-yl)-4H-cyclopenta[2,1-b,3;4-b′]dithiophene Derivatives for Optoelectronic Devices, The Journal of Pure and Applied Chemistry Research. 2019, 8, 126–139. https://doi.org/10.21776/ub.jpacr.2019.008.02.438.
Abdullahi, M.; Adeniji, S.E.; In-silico molecular docking and ADME/Pharmacokinetic prediction studies of some novel carboxamide derivatives as anti-tubercular agents, Chemistry Africa. 2020, 3, 989–1000. https://doi.org/10.1007/s42250-020-00162-3.
Afolabi, S.O.; Semire, B.; Akiode, O.K.; Idowu, M.A.; Quantum study on the optoelectronic properties and chemical reactivity of phenoxazine-based organic photosensitizer for solar cell purposes, Theoretical Chemistry Accounts. 2022, 141, https://doi.org/10.1007/s00214-022-02882-w.
Ibrahim, A.O.; Semire, B.; Adepoju, A.J.; Latona, D.F.; Oyebamiji, A.K.; Owonikoko, A.D.; Oladuji T.E.; Odunola. O.A.; In Silico investigations on structure, reactivity indices, NLO properties, and bio-evaluation of 1-benzyl-2-phenyl-1H-benzimidazole derivatives using DFT and molecular docking approaches. Biointer Res Appl Chem. 2023, 13, 233. https://doi.org/10.33263/BRIAC133.233
Eswaramoorthy, R.; Hailekiros, H.; Sabir, F.K.; Endale, M.; In silico Molecular Docking, DFT Analysis and ADMET Studies of Carbazole Alkaloid and Coumarins from Roots of Clausena anisata: A Potent Inhibitor for Quorum Sensing, Advances and Applications in Bioinformatics and Chemistry. 2021, 14, 13–24. https://doi.org/10.2147/aabc.s290912.
Khaldan, A.; Bouamrane, S.; El Mchichi, R. E. M. L.; Maghat, H.; Lakhlifi, M. B. T.; Sbai, A.; In search of new potent α-glucosidase inhibitors: molecular docking and ADMET prediction. Moroccan Journal of Chemistry, 2022, 10(4), 10-14. https://doi.org/10.33263/BRIAC134.302
Rivera-Delgado, E.; Xin, A.W.; Von Recum, H.A.; Using QSARs for predictions in drug delivery, bioRxiv (Cold Spring Harbor Laboratory). 2019, https://doi.org/10.1101/727172.
Mahmud, A.W.; Shallangwa, G.A.; Uzairu, A.; QSAR and molecular docking studies of 1,3-dioxoisoindoline-4-aminoquinolines as potent antiplasmodium hybrid compounds, Heliyon. 2020, 6, e03449. https://doi.org/10.1016/j.heliyon.2020.e03449.
Islam, M.R.; Mahadzir, M.; Modelling and Optimizing of Joint’s Fracture Toughness between A7075-T651 and AZ31B Dissimilar Alloys Welded by GMA Spot Welding Method, Applied Mechanics and Materials. 2014, 663, 281–286. https://doi.org/10.4028/www.scientific.net/amm.663.281.
Oyebamiji, A.K.; Semire, B.; Dft-Qsar model and docking studies of antiliver cancer (Hepg-2) activities of 1, 4-diydropyridine based derivatives. Cancer Biology 2016, 6, 69-78. https://doi.org/10.7537/marscbj06021610.
Abdullah, S.; Napi, N.N.L.M.; Ahmed, A.N.; Mansor, W.N.W.; Mansor, A.A.; Ismail, M.; Abdullah, A.M.; Ramly, Z.T.A.; Development of Multiple Linear Regression for Particulate Matter (PM10) Forecasting during Episodic Transboundary Haze Event in Malaysia, Atmosphere. 2020, 11, 289. https://doi.org/10.3390/atmos11030289.
Vázquez-Jiménez, L.K.; Juárez-Saldívar, A.; Gómez-Escobedo, R.; Delgado-Maldonado, T.; Méndez-Álvarez, D.; Palos, I.; Bandyopadhyay, D.; Gaona‐López, C.; Ortiz-Pérez, E.; Nogueda‐Torres, B.; Ramírez‐Moreno, E.; Rivera, G.; Ligand-Based virtual screening and molecular docking of benzimidazoles as potential inhibitors of triosephosphate isomerase identified new trypanocidal agents, International Journal of Molecular Sciences. 2022, 23, 10047. https://doi.org/10.3390/ijms231710047.
Purwanto, B.T.; Hardjono, S.; Widiandani, T.; Nasyanka, A.L.; Siswanto, I.; In Silico Study and ADMET prediction of N-(4-fluorophenylcarbamothioyl) Benzamide Derivatives as Cytotoxic Agents. 2021, 2, 48. http://www.jonuns.com/index.php/journal/article/view/515.
Oyebamiji, A.K.; Akintelu, S.A.; Amao, O.P.; Kaka, M.O.; Morakinyo, A.; Amao, F.A.; Semire, B.; Dataset on theoretical bio-evaluation of 1,2,4-thiadiazole-1,2,4-triazole analogues against epidermal growth factor receptor kinase down regulating human lung cancer, Data in Brief. 2021, 37, 107234. https://doi.org/10.1016/j.dib.2021.107234.
Nehra, N.; Tittal, R.K.; Ghule, V.D.; 1,2,3-Triazoles of 8-Hydroxyquinoline and HBT: synthesis and studies (DNA binding, antimicrobial, molecular docking, ADME, and DFT), ACS Omega. 2021, 6, 27089–27100. https://doi.org/10.1021/acsomega.1c03668.
Pal, R.; Chattaraj, P.K.; Electrophilicity index revisited, Journal of Computational Chemistry. 2022, 44, 278–297. https://doi.org/10.1002/jcc.26886.
Miar, M.; Shiroudi, A.; Pourshamsian, K.; Oliaey, A.R.; Hatamjafari, F.; Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and substituent effects, Journal of Chemical Research. 2020, 45, 147–158. https://doi.org/10.1177/1747519820932091.
Haribabu, J.; Garisetti, V.; Malekshah, R.E.; Swaminathan, S.; Gayathri, D.; Bhuvanesh, N.; Mangalaraja, R.V.; Echeverría, C.; Karvembu, R.; Design and synthesis of heterocyclic azole based bioactive compounds: Molecular structures, quantum simulation, and mechanistic studies through docking as multi-target inhibitors of SARS-CoV-2 and cytotoxicity, Journal of Molecular Structure. 2022, 1250, 131782. https://doi.org/10.1016/j.molstruc.2021.131782.
El‐ghamry, M.A.; Elzawawi, F.M.; Aziz, A.A.A.; Nassir, K.M.; Abu‐El‐Wafa, S.M.; New Schiff base ligand and its novel Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) complexes: spectral investigation, biological applications, and semiconducting properties, Scientific Reports. 2022, 12, https://doi.org/10.1038/s41598-022-22713-z.
Ameji, J.P.; Uzairu, A.; Shallangwa, G.A.; Shallangwa, G.A.; Design, pharmacokinetic profiling, and assessment of kinetic and thermodynamic stability of novel anti-Salmonella typhi imidazole analogues, Bulletin of the National Research Centre. 2023,. 47, https://doi.org/10.1186/s42269-023-00983-5.
Meanwell, N.A.; Lolli, M.L.; Applications of Heterocycles in the Design of Drugs and Agricultural Products, 1st ed., Elsevier, Inc, 2021. https://shop.elsevier.com/books/applications-of-heterocycles-in-the-design-of-drugs-and-agricultural-products/meanwell/978-0-12-820181-7.
Driouche, Y.; Messadi, D.; Quantitative structure-retention relationship model for predicting retention indices of constituents of essential oils of Thymus vulgaris (Lamiaceae), Journal of the Serbian Chemical Society. 2019, 84, 405–416. https://doi.org/10.2298/jsc180817010d.