Електрична провідність, йон-молекулярна ассоціація та міжйонні взаємодії у розчинах деяких тетралкіламмонієвих солей в ацетонітрилі: вплив йона та температури
Анотація
В роботі наведені експериментальні дані з електричної провідності розчинів Et4NBr, Et4NBF4, Bu4NBr, Bu4NBF4 в ацетонітрилі в інтервалі молярної концентрації 2·10-4–1·10-2 моль·дм-3 при температурах 5 ‑ 55 °C. Граничні молярні електропровідності та константи іонної асоціації розраховані за допомогою рівняння Лі-Вітона для симетричних елетролітів. На підставі попереднього аналізу кондуктометричних даних було встановлено, що параметр найбільшого зближення практично не залежить від температури для всіх досліджених ацетонітрильних розчинів. Тому параметр найбільшого зближення був прийнятий як сума радіусів катіонів і аніонів для подальшої обробки кондуктометричних даних.
Значення граничних іонних провідностей Br-, BF4-, Et4N+ та Bu4N+, а також структурно-динамічного параметра йон-молекулярної взаємодії, що були отримані за експериментальними граничними молярними електропровідностями, були інтерпретовані в рамках підхода, запропонованого авторами [Kalugin O. N., Vjunnik I. N. Limiting ion conductance and dynamic structure of the solvent in electrolyte solution. Zh. Khim. Fiz. (Rus.) 1991, 10 708-714]. Встановлено що подовження алкільного радикалу в катіоні Bu4N+ порівняно з Et4N+ веде до значного зростанням структурно-динамічного параметра, що свідчить про динамічне структурування молекул розчинника біля йону тетрабутиламмонія та збільшенням сольвофобної сольватації Bu4N+ у порівнянні з Et4N+.
Константи йонної асоціації обговорені з позицій конкуренції між електростатичними та некулонівськими силами за допомогою короткодіючого некулонівського потенціала. Збільшення значень констант іонної асоціації у ряду Bu4NBF4<Et4NBF4<Bu4NBr<Et4NBr пояснюється збільшенням внеску короткодіючих іон-молекулярних взаємодій в міжйонне притяжіння на додаток до електростатичної складової. Було встановлено, що збільшення температури посилює йонну ассоціацію завдяки як електростатичній, так і короткодіючій складовій.
Завантаження
Посилання
Kurniawan A., Ong L. K., Kurniawan F., Lin C. X., Soetaredjo F. E., Zhao X. S., Ismadji S. Easy approach to synthesize N/P/K co-doped porous carbon microfibers from cane molasses as a high performance supercapacitor electrode material. RSC Adv. 2014, 4 (66), 34739-34750.
Laheäär A., Peikolainen A.-L., Koel M., Jänes A., Lust E. Comparison of carbon aerogel and carbide-derived carbon as electrode materials for non-aqueous supercapacitors with high performance. J. Solid State Electrochem. 2012, 16.
Morimoto T., Tsushima M., Suhara M., Hiratsuka K., Sanada Y., Kawasato T. Electric Double- Layer Capacitor using Organic Electrolyte. Mat. Res. Soc. Symp. Proc. 2011, 496 627.
Hung K., Masarapu C., Ko T., Wei B. Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric. J. Power Sources 2009, 193 (2), 944-949.
Cazorla-Amorós D., Lozano-Castelló D., Morallón E., Bleda-Martínez M. J., Linares-Solano A., Shiraishi S. Measuring cycle efficiency and capacitance of chemically activated carbons in propylene carbonate. Carbon 2010, 48 (5), 1451-1456.
Brandt A., Pohlmann S., Varzi A., Balducci A., Passerini S. Ionic liquids in supercapacitors. MRS Bull. 2013, 38 (7), 554-559.
Senda A., Matsumoto K., Nohira T., Hagiwara R. Effects of the cationic structures of fluorohydrogenate ionic liquid electrolytes on the electric double layer capacitance. J. Power Sources 2010, 195 (13), 4414-4417.
Ue M. Electrochemical Properties of Organic Liquid Electrolytes Based on Quaternary Onium Salts for Electrical Double-Layer Capacitors. J. Electrochem. Soc. 1994, 141 (11), 2989.
Wang Y., Song Y., Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45 (21), 5925-5950.
Das B., Saha N., Hazra D. K. Ionic Association and Conductances of Some Symmetrical Tetraalkylammonium Salts in Methanol, Acetonitrile, and Methanol (1) + Acetonitrile (2) Mixtures at 298.15 K. J. Chem. Eng. Data 2000, 45 (2), 353-357.
Anand H., Verma R. Solvation of Some Tetraalkylammonium Salts Investigated Conductometrically and Viscometrically in Binary Mixtures of Acetonitrile + Methanol at 298.15 K. Z. Phys. Chem. 2015, 230.
Patil P. P., Tiwari S. Effect of blockage ratio on wake transition for flow past square cylinder. Fluid Dyn. Res. 2008, 40 (11), 753-778.
Wypych-Stasiewicz A., Benko J., Vollărovă O., Bald A. Conductance studies of Et4NIO4, Et4NClO4, Bu4NI, Et4NI and the limiting ionic conductance in water+acetonitrile mixtures at 298.15K. J. Mol. Liq. 2014, 190 54-58.
Mysyk R., Gao Q., Raymundo-Piñero E., Béguin F. Microporous carbons finely-tuned by cyclic high-pressure low-temperature oxidation and their use in electrochemical capacitors. Carbon 2012, 50 (9), 3367-3374.
Riddick J. A., Bunger W. B., Sakano T. K. Organic solvents: physical properties and methods of purification. Fourth edition. John Wiley and Sons,New York, NY: United States, 1986.
Harkness A. C., Daggett Jr H. M. The Electrical Conductivities of some tetra-n-alkylammonium salts in acetonitrile. Can. J. Chem. 1965, 43 (5), 1215-1221.
Kalugin O. N., Vjunnik I. N. Some issues of conductometric data processing. Existing Electrolyte Options. Russ. J. Gen. Chem. 1989, 59 (7), 1213-1216.
Pethybridge A. D., Talbot J., House W. A. Precise Conductance Measurements on Dilute Aqueous Solutions of Sodium and Potassium Hydrogenphosphate and Dihydrogenphosphate. J. Solution Chem. 2006, 35 381-393.
Lee W. H., Wheaton R. J. Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 1.—Relaxation terms. J. Chem. Soc., Faraday Trans. 2 1978, 74 (0), 743 766.
Lee W. H., Wheaton R. J. Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 2.—Hydrodynamic terms and complete conductance equation. J. Chem. Soc., Faraday Trans. 2 1978, 74 (0), 1456-1482.
Lee W. H., Wheaton R. J. Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 3. - Examination of new model and analysis of data for symmetrical electrolytes. J. Chem. Soc., Faraday Trans. 2 1979, 75 1128-1145.
Barthel J., Wachter R., Gores H. J. Temperature Dependence of Conductance of Electrolytes in Nonaqueous Solutions. In Modern Aspects of Electrochemistry: No. 13, Conway, B. E.; Bockris, J. O. M., Eds. Springer US: Boston, MA, 1979; pp 1-79.
Lukinova E. V., Kalugin O. N., Novikova A. J. Solutions of Et4NBF4 in acetonitrile from the standpoint of the quasilattice model: NMR and conductometry studies. Kharkov Univ. Bull. Chem. Ser. 2005, 12(35) (648), 177-180.
Lukinova E. V., Ivanova A. A., Kalugin O. N. Concentrated solutions of Bu4NBF4 in acetonitrile as model electrolytes for supercapacitors: problems and prospects of a theoretical description. Sci. Bull. Chernivtsi Nat. Univ. Chem. 2008, 399-400 116-118.
Lukinova E. V., Kalugin O. N. Electrical conductivity of solutions of Bu4NBr in acetonitrile in a wide range of concentrations. Kharkov Univ. Bull. Chem. Ser. 2009, 17(40) (870), 178-184.
Krumgalz B. Separation of limiting equivalent conductances into ionic contributions in non-aqueous solutions by indirect methods. J. Chem. Soc., Faraday Trans. 1 1983, 79.
Safonova L. P., Pasasia, B. K., Kolker, A. M. Electrical conductivity of individual ions and their association in acetonitrile at 233-318 K. Russ. J. Phys. Chem. 1992, 66 (8), 2201-2208.
Krumgalz B., Fleisher Z. Comments on Gill's approach to the evaluation of single limiting ionic conductances in organic solvents. J. Chem. Soc., Faraday Trans. 1 1985, 81.
Barthel J., Iberl L., Rossmaier J., Gores H. J., Kaukal B. Conductance of 1,1-electrolytes in acetonitrile solutions from −40° to 35°C. J. Solution Chem. 1990, 19 (4), 321-337.
Tsierkezos N. G., Philippopoulos A. I. Studies of ion solvation and ion association of n tetrabutylammonium hexafluorophosphate and n-tetrabutylammonium tetraphenylborate in various solvents. Fluid Phase Equilib. 2009, 277 (1), 20-28.
Kalugin O. N., Vjunnik I. N. Limiting ion conductance and dynamic structure of the solvent in electrolyte solution. Zh. Khim. Fiz. (Rus.) 1991, 10 708-714.
Kalugin O. N., Vjunnik I. N., Nur-Eddin I. Interparticle interactions in 1-1 electrolyte solutions in dimethylsulfoxide. II. Limiting molar conductance of ions and dynamic structure of solvent. Russ. J. Struct. Chem. 1992, 33 105-114.
Lebed A. V., Kalugin O. N., Vjunnik I. N. Properties of 1-1 Electrolytes Solutions in Ethylene Glycol at Temperatures from 5 to 175oC. II. Limiting ion conductances and Ion-Molecular Interactions. J. Chem. Soc., Faraday Trans. 2 1998, 94 (15), 2103-2107.
Kalugin O. N. Dynamics of solvated ion in infinitely diluted solution: from phenomenology to microscopic description. Kharkov Univ. Bull. Chem. Ser. 2002, 9 (573), 13-45.
Zhang H., Wang J., Chen Y., Wang Z., Wang S. Long-term cycling stability of polyaniline on graphite electrodes used for supercapacitors. Electrochim. Acta 2013, 105 69-74.
Samoilov O. Y. Stucture of water solutions of electrolytes and hydration of ions. Nauka, 1957; p 183.
Barthel J., Kunz W. Vapor pressure data for non-aqueous electrolyte solutions. Part 5. Tetraalkylammonium salts in acetonitrile. J. Solution Chem. 1988, 17 (5), 399-415.
Vjunnik I. N., Kalugin O. N., Gubskiy S. M. Non-Coulombic parameters of interparticle interactions in non-aqueous solutions of 1-1 electrolytes in a wide temperature range. Kharkov Univ. Bull. Chem. Ser. 1993, 377 15-30.
Ebeling W. Theorie der Bjerrumschen Ionenassoziation in Elektrolyten. Z. Phys. Chem. 1968, 238 (5/6), 400-408.
Rasaiah J. C., Friedman H. L. Charged square-well model for ionic solutions. J. Phys. Chem. 1968, 72 (9), 3352-3353.
Barthel, J.; Gores, H. J.; Hess, P.; Kniep, R.; Rabenau, A.; Schmeer, G.; Wachter, R., Physical and Inorganic Chemistry. Springer-Verlag Berlin Heidelberg: 1983; Vol. 111, p VII, 196.