Mechanism of enhanced oxidation ability of dilute nitric acid and dissolution of pure gold in seawater with nitric acid

Keywords: nitryl or nitronium ion, CTAC, evolution of chlorine, oxidation of bromide, salt effect, bulk water structure, dilute aqua regia, tetrachloroaurate, concentrated salt, Raman spectrum

Abstract

It has been discovered that dilute nitric acid in reversed micelle systems can oxidize the Br- ion to Br2 and we have proposed that the nitryl (or nitronium) ion NO2+ should be the active species in the oxidation process. Nitration of phenol in reversed micelle systems with dilute nitric acid, CHCl3/CTAC/H2O (2.0 mol dm-3 HNO3 in the 1.0% (v/v) H2O phase), has been performed at 35 ºC to obtain 2- and 4-nitrophenols, where CTAC represents cetyltrimethylammonium chloride. In aqueous 2.0 mol dm-3 HNO3 solution accompanied by 4.0 mol dm-3 LiCl (and a small amount of LiBr as the bromide resource), trans-1,4-dibromo-2-butene was successfully brominated to 1,2,3,4-tetrabromobutane. This result is good evidence that the Br- ion can be oxidized to Br2 in dilute nitric acid (2.0 mol dm-3) providing it contains concentrated salts. For chloride salts, the cation effects increased as Et4N+ << Na+ < Li+ < Ca2+ < Mg2+. Even the evolution of Cl2 has been demonstrated from < 2.0 mol dm-3 HNO3 solution containing concentrated LiCl, MgCl2, and CaCl2 as well as AlCl3. The dissolution of precious metals (Au, Pt, and Pd), especially, of gold has been demonstrated in 0.1 - 2 mol dm-3 HNO3 accompanied by alkali metal, alkaline earth metal, and aluminum chlorides. The complete dissolution time of pure gold plate (20±2 mg, 0.1 mm thickness) in 2.0 mol dm-3 HNO3 accompanied by 1.0 mol dm-3 AlCl3 has been shortened remarkably with temperature increase from 15 to 80 ºC. The dissolution rate constants, log (k /s-1), of a piece of gold wire (19.7±0.5 mg) in 20 mL of 2.0 mol dm-3 HNO3 accompanied by the metal chlorides, in general, increase with increasing salt concentrations at 40 and 60 ºC. The gold can be dissolved in the solution of <1.0 mol dm-3 HNO3 and <1.0 mol dm-3 HCl, i.e. a “dilute aqua regia." We have achieved a total dissolution of five pieces of the gold wire (totally 0.10 g) in 100 mL of the 1:1 mixture between seawater and 2.0 mol dm-3 HNO3 at ca. 100 ºC.

Downloads

Download data is not yet available.

References

Langer, S.; Pemberton, R.S.; Finlayson-Pitts, B.J. J. Phys. Chem. A 1997, 101, 1277.

Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry: A Comprehensive Text; 4th Ed; Wiley: New York, 1980; Chap. 6.

Petkovic, D.M. J. Chem. Soc. Dalton Trans. 1982, 2425.

Hojo, M.; Ueda, T.; Daike, C.; Takezaki, F.; Furuya, Y.; Miyamoto, K.; Narutaki, A.; Kato, R. Bull. Chem. Soc. Jpn. 2006, 79, 1215.

Nose, A.; Hojo, M.; Ueda, T. J. Phys. Chem. B 2004, 108, 798.

Hojo, M. Pure Appl. Chem. 2008, 80, 1539; and therein.

Hojo, M.; Ueda, T.; Ike, M.; Kobayashi, M.; Nakai, H. J. Mol. Liquids 2009, 145, 152.

(a) Manege, L. C.; Ueda, T.; Hojo, M. Bull. Chem. Soc. Jpn. 1998, 71, 589. (b) Manege, L. C.; Ueda, T.; Hojo, M.; Fujio, M. J. Chem. Soc. Perkin Trans. 2 1998, 1961. (c) Hojo, M.; Ueda, T.; Inoue, S.; Kawahara, Y. J. Chem. Soc. Perkin Trans. 2 2000, 1735. (d) Hojo, M.; Ueda, T.; Ueno, E.; Hamasaki, T.; Fujimura, D. Bull. Chem. Soc. Jpn. 2006, 79, 751. (e) Hojo, M.; Ueda, T.; Ueno, T.; Hamasaki, T.; Nakano, T. Bull. Chem. Soc. Jpn. 2010, 83, 401. (f) Hojo, M.; Aoki, S. Bull. Chem. Soc. Jpn. 2012, 85, 1023.

Reichardt, C.; Che, D.; Heckenkemper, G.; Schaefer, G. Eur. J. Org. Chem. 2001, 2343.

Frank, H.S.; Wen, W.-Y.; Discuss. Faraday Soc. 1957, 24, 133.

Park, S.; Molianen, D.E.; Fayer, M.D. J. Phys. Chem. B 2008, 112, 5279.

Gopalakrishnan, S.; Liu, D.; Allen, H.C.; Kuo, M.; Shultz, M.J. Chem. Rev. 2006, 106, 1155.

Kuo, David, M.H.; A.; Kamelamela, N.; White, M.; Shultz, M.J. J. Phys. Chem. C 2007, 111, 8827.

Smith, M.B.; March, J. March’s Advanced Organic Chemistry Reactions, Mechanisms, and Structure; 6th Ed; Wiley-Interscience: Hoboken, NJ, USA, 2007; p. 689.

Smith, M.B.; March, J. March’s Advanced Organic Chemistry Reactions, Mechanisms, and Structure; 6th Ed; Wiley-Interscience: Hoboken, NJ, USA, 2007; p. 665.

Onori, G.; Santucci, A. J. Phys. Chem. 1993, 97, 5430.

Gutmann, V. The Donor-Acceptor Approach to Molecular Interactions; Plenum: New York; 1978.

Grove, J. R.; Raphael, L. J. Inorg. Nucl. Chem. 1963, 25, 130.

Wright, E.R.; Smith, R.A.; Messick, B.G. In Colorimetric Determination of Nonmetals. Boltz, D.F.; Howell J.A., Eds. Wiley: New York, 1978; Chap. 2, p. 47.

Rossi, M.J. Chem. Rev. 2003, 103, 4823.

Boltz, D.F.; Holland, W.J.; Howell, J.A. In Colorimetric Determination of Nonmetals. Boltz, D.F.; Howell J.A., Eds. Wiley: New York, 1978; Chap. 4, p. 88.

Boughriet, A.; Wartel, M.; Fischer, J.C. J. Electroanal. Chem. 1985, 190, 103.

Bard, A.J.; Parsons, R.; Jordan J., Eds. Standard Potentials in Aqueous Solution; Marcel Dek-ker: New York, 1985.

Olah, G.A.; Malhotra, R.; Narang, S.C. Nitration: Methods and Mechanisms; VCH: New York, 1989; p. 192.

Bontempelli, G.; Mozzocchin, G.-A.; Magno, F. J. Electroanal. Chem. 1974, 55, 91.

Behnke, W.; George, C.; Scheer, V.; Zetzsch, C. J. Geophys. Res. 1997, 102, 3795.

Oki, M.; Ohsawa, T.; Tanaka, M.; Chihara H., Eds. Encyclopedic Dictionary of Chemistry; Tokyo Kagaku Dozin: Tokyo, 1989; p. 322 (in Japanese).

Moeller, T.; Bailar, J.C. Jr.; Kleinberg, J.; Guss, C.O.; Castellion, M.E.; Metz, C. Chemistry with Inorganic Qualitative Analysis; Academic Press: New York, 1980; p. 670.

Kumar, S.; Varadarajan, R.; Chawla, H.M.; Hundal, G.; Hundal, M.S. Tetrahedron 2004, 60, 1001.

Bharadwaj, S.K.; Hussain, S.; Kar, M.; Chaudhuri, M.K. Catalysis Commun. 2008, 9, 919.

Bazsa, G. Comments Inorg. Chem. 1986, 5, 57.

Scherer, J.R.; Go, M.K.; Kint, S. J. Phys. Chem. 1974, 78, 1304. Irish, D.E.; Brooker, M.H. In Advances in Infrared and Raman Spectroscopy. Clark, R.J.H.; Hester R.E., Eds. Heyden: London, 1976; Vol. 2, Chap. 6, p. 239.

Pastorczak, M.; Kozanecki, M.; Ulanski, J. J. Phys. Chem. A 2008, 112, 10705.

Gordon, J.E. The Organic Chemistry of Electrolyte Solutions; Wiley: New York, 1975; p. 167.

Hindman, J.C. J. Chem. Phys. 1962, 36, 1000.

Li, R.; Jiang, Z.; Shi, S.; Yang, H. J. Mol. Struct. 2003, 645, 69.

Yonehama, K.; Yoshimura, Y.; Takekiyo, T.; Kanno, H. Bull. Chem. Soc. Jpn. 2009, 82, 563.

Abelson, P.H. Science 1986, 233, 141.

Beckham, L.J.; Fessler, W.A.; Kise, M. A. Chem. Rev. 1951, 48, 319.

Marsden, J.O.; House, C.I. The Chemistry of Gold Extraction; 2nd Ed; Society for Mining, Metallurgy, and Exploration (SME), Inc.: Littleton, Colorado, 2006; p. 233.

Marsden, J.O.; House, C.I. The Chemistry of Gold Extraction; 2nd Ed; Society for Mining, Metallurgy, and Exploration (SME), Inc.: Littleton, Colorado, 2006; p. 272.

(a) Debye, P.; Hückel, E. Phys. Z. 1923, 24, 185, 305. (b) Fraenkel, D. J. Phys. Chem. B, 2011, 115, 14634.

Pitzer, K.S. Activity Coefficients in Electrolyte Solutions; 2nd Ed; CRC: Boca Raton, Florida, 1991.

Nakahara, M. Dictionary of Inorganic Compounds and Complexes; Kodansha Scientific: To-kyo, 1997 (in Japanese).

Jones, P.G.; Schelbach, R.; Schwarzmann, E. Z. Naturforsch. B 1987, 42, 522.

Roehl, C.M.; Orlando, J.J.; Calvert, J.G. J. Photochem. Photobiol. A: Chem. 1992, 69, 1.

Whitfield, M. Sea Water as an Electrolyte Solution. In Chemical Oceanography. Riley, J. P.; Skirrow G., Eds.; Vol. 1; 2nd Ed; Academic Press: London, 1975; Chap. 2.

Holland, H.D. The Chemistry of the Atmosphere and Ocean; Wiley: New York, 1978; Chap. 5.

http://en.wikipedia.org/wiki/Seawater.

Sayd, S. Hydrometallurgy 2012, 115-116, 30.

Weast, R. C. Handbook of Chemistry and Physics; 70th Ed; CRC: Boca Raton, Florida, 1989; D-130.

Published
2019-12-27
Cited
How to Cite
Hojo, M. (2019). Mechanism of enhanced oxidation ability of dilute nitric acid and dissolution of pure gold in seawater with nitric acid. Kharkiv University Bulletin. Chemical Series, (33), 6-22. https://doi.org/10.26565/2220-637X-2019-33-01