Симетрія парності в ряді проблем квантової та структурної хімії

Ключові слова: J-симетрія, матриці густини, електронна кореляція, альтернанті вуглеводні, функції Гріна, молекулярна електропровідність, хіральність

Анотація

Дається синтетичний огляд і нові результати з теорії та застосувань альтернантної симетрії на засадах єдиного підходу, що базується на використанні операторів J-симетрії (симетрії парності). Останні, на відміну від типової комутації, антикомутують з гамільтоніанами або іншими придатними операторами. Ми трактуємо в виразах J-симетрії різноманітні теми та проблеми, котрі здебільша пов’язано з π-оболонками супряжених молекул. Зокрема окреслено різноманітні орбитальні теорії із систематичним використуванням блок-матричної техніки (матриці густини, операторні функції тoщо). В контексті проблем електричної провідності поодиноких молекул вивчено π-моделі та їхня J–симетрія поруч із способами розрахунку функцій Гріна та електронної трансмісії. Ми підкреслюємо принципову важливість врахування π-електронної кореляції для правильного описування π-спектру трансмісії. Розглянуто особливості електронної структури радикальних станів альтернантів та придатність спінового правила Ліба-Овчинникова, котре є результатом дії J–симетрії у згоді з ефектами електронної кореляції. Показано, як спрощена (заснована на хюккелівських МО) спін-поляризаційна модель забезпечує коректні оцінки числа ефективно розпарених електронів в полірадикалоїдних альтернантах. Інший тип задач стосується до проблеми молекулярної хіральності (взагалі структурної асиметрії). Аналіз спектру раніше впровадженого оператора хіральності дав можливість реінтерпретувати проблему у виразах J–симетрії. Це дозволило зконструювати новий оператор хіральності, який є невід’ємно визначеним та який зникає на ахіральних структурах. Його найпростіший інваріант, матричний слід, слугує за кількісну міру структурної або електронної хіральності. Попередні розрахунки свідчать, що новий індекс хіральності поводиться розумно, навіть для високо симетричних хіральних систем.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

Coulson C.A. Rushbrooke G. S. Note on the method of molecular orbitals. Proc. Cambridge Phil. Soc. 1940, 36, 193–200.

C.A. Coulson, The electronic structure of some polyenes and aromatic molecules. VII. Bonds of fractional order by the molecular orbital method. Proc. R. Soc. Lond. 1939, A169, 413-428.

Coulson C.A., Longuet-Higgins H.C. The electronic structure of conjugated systems. I. Gen-eral theory. Proc. R. Soc. Lond. 1947, A191, 39-60.

Coulson C.A., Longuet-Higgins H.C. The Electronic Structure of Conjugated Systems. II. Unsaturated Hydrocarbons and their Hetero-Derivatives. Proc. Roy. Soc. London 1947, A192, 16-32.

Ruedenberg K., Scherr C.W. Free-Electron Network Model for Conjugated Systems. I. Theory. J. Chem. Phys. 1953, 21, 1565–1581.

Ruedenberg K. Quantum Mechanics of Mobile Electrons in Conjugated Bond Systems. III. Topological Matrix as Generatrix of Bond Orders. J. Chem. Phys. 1961, 34, 1884-1892.

McIntosh H.V. On matrices which anticommute with a Hamiltonian. J. Mol. Spectrosc. 1962, 8, 169-192.

Solomon G.C., Gagliardi A., PecchiaA., Frauenheim T., Di-Carlo A., Reimers J. R., Hush N. S. The symmetry of single-molecule conduction. J. Chem. Phys. 2006, 125, 184702-1-5.

Fowler P.W., Pickup B.T., Todorova T.Z., Myrvold W. A selection rule for molecular conduc-tion. J. Chem. Phys. 2009, 131, 0441041-1-7.

Yoshizawa K. An Orbital Rule for Electron Transport in Molecules. Acc. Chem. Res. 2012, 45, 1612-1621.

Tsuji Y., Estrada E., Movassagh R., Hoffmann R. Quantum Interference, Graphs, Walks, and Polynomials. Chem. Rev. 2018, 118, 4887-4911.

Luzanov A.V. Single-molecule electronic materials: conductance of π-conjugated oligomers within quasi-correlated tight-binding model. Funct. Mater. 2019, 26, 152–163.

Kőnig D. Theorie der Endlichen und Unendlichen Graphen: Kombinatorische Topologie der Streckenkomplexe; Akad.-Verlag: Leipzig, 1936.

Mallion R.B., Rouvray D.H. The golden jubilee of the Coulson-Rushbrooke pairing theorem. J. Math. Chem. 1990, 5, 1-21.

Asratian A.S., Denley T.M.J., Haggkvist R. Bipartite Graphs and their Applications; Cam-bridge University Press: Cambridge, 1998.

Bochvar D.A., Stankevich I.V., Chistyakov A.L. Energy levels of truly alternant systems. Russ. J. Phys. Chem. 1961, 35, 656-658.

Rebane T.K. A generalization of the notion of alternant conjugated molecule. Vestnik LGU 1963, 22 (4), 30-34 [in Russian].

Mestechkin M.M. Use of independent coefficients in solving equations by molecular-orbital methods. Theor. Exp. Chem. 1967, 1, 388–393.

Coulson C. A., Taylor R. Studies in graphite and related compounds. III. Electronic band structure in boron nitride. Proc. Phys. Soc. 1952, 65, 834.

McWeeny R. Methods of Molecular Quantum Mechanics; Academic Press: London, 1989.

Mestechkin M.M. Density Matrix Method in the Theory of Molecules; Naukova Dumka: Kiev,1977 [in Russian].

Dirac P.A.M. Discussion of the infinite distribution of electrons in the theory of the positron. Proc. Cambr. Phil. Soc. 1934, 30, 150-163.

Luzanov A.V. Effectively unpaired electrons in bipartite lattices within the generalized tight-binding approximation: application to graphene nanoflakes. Funct. Mater. 2014, 21, 437-447.

Luzanov A.V. Effectively unpaired electrons for singlet states: from diatomics to graphene nanoclusters; In Practical Aspects of Computational Chemistry IV; Leszczynski J., Shukla M.K., Eds.; Springer US: Boston, MA, 2016, pp. 151–206.

Hall G.G. The Bond Orders of Alternant Hydrocarbon Molecules. Proc. R. Soc. Lond. A 1955, 229-259.

Laird E.A., Kuemmeth F., Steele G.A., Grove-Rasmussen K., Nygård J., Flensberg K., Kou-wenhoven L.P. Quantum Transport in Carbon Nanotubes. Rev. Mod. Phys. 2015, 87, 703-764.

Varsano D., Sorella S., Sangalli D., Barborini M., Corni S., Molinari E., Rontani M. Carbon nanotubes as excitonic insulators. Nature Commun. 2017, 8, 1461-1-9.

Mitra M. Introduction on Carbon Nanotubes (CNT) and Its Applications in Electronic Cir-cuits. J. Electronic Research 2018, 2, 5-17.

Lee J., Lee D.M., Jung Y., Park J., Lee H.S., Kim Y.K., Park C.R., Jeong H.S, Kim S.M. Di-rect spinning and densification method for high-performance carbon nanotube fibers. Nature Commun. 2019, 10, 2962.

Compernolle S., Chibotaru L., Ceulemans A. Eigenstates and transmission coefficients of fi-nite-sized carbon nanotubes. J. Chem. Phys. 2003, 119, 2854-2873.

Mestechkin M. Finite length nanotubes: Ground state degeneracy and single electron spec-trum. J. Chem. Phys. 2005, 122, 186-192.

Onipko A., Malysheva L. Electron Spectrum of Graphene Macromolecule Revisited. Phys Status sol (b) 2018, 255, 1700248-1-8.

Luzanov A.V. Elementary Estimations of Electronic and Topological Indices for Achiral Nanotubes. Kharkov Univ. Bull., Chem. Ser. 2006, 14(37), 14–18 [in Russian].

Baird N.C., Whitehead M.A. Molecular orbital calculations for conjugated molecules contain-ing boron and nitrogen. Can. J. Chem. 1967, 45, 2059-2070.

Ng M.-F., Zhang R.Q. Optical spectra of single-walled boron nitride nanotubes, Phys. Rev. B 2004, 69, 115417-1-4.

Davison S.G., Amos A.T. Spin polarized orbitals for localized states in crystals. J. Chem. Phys. 1965, 43, 2223–2233.

Pople J.A. Electron interaction in unsaturated hydrocarbons. Trans. Faraday Soc. 1953, 49, 1375-1385.

Pople J.A., Hush N.S. Ionization potentials and electron affinities of conjugated hydrocarbon molecules and radicals. Trans. Faraday Soc. 1955, 51, 600–605.

Luzanov A.V. Single-Molecule Conductance Theory Using Different Orbitals for Different Spins: Applications to π-Electrons in Graphene Molecules; In Nanophotonics, Nanooptics, Nanobiotechnology, and Their Applications (NANO 2018) (Springer Proceedings in Physics); Fesenko O., Yatsenko L. Eds.; Springer: Cham, 2019, Vol. 222, pp. 341–358.

Brickstock A., Pople J.A. Resonance energies and charge distributions of unsaturated hydro-carbon radicals and ions. Trans. Faruday Soc. 1954, 50, 901-911.

Cheranovskii V.O. Quasihomopolar levels in one-dimensional molecular systems in the spin-Hamiltonian method. Physics of Many-Particle Systems. 1989, 16, 30-44 [in Russian].

Mestechkin M.M. Instability of Hartree–Fock Equations and Stability of Molecules; Naukova Dumka: Kiev, 1986 [in Russian].

Ivanov V.V., Kisil I.P., Luzanov A.V. Complete account of the π-electron correlation in calcu-lating ring currents in conjugated aromatic and antiaromatic systems. J. Struct. Chem. 1996, 37, 537–543.

Mestechkin M.M., Whyman G.E., Klimo V., Tino J. Spin-Extended Hartree-Fock Method and Its Application to Molecules; Naukova Dumka: 1983 [in Russian].

Luzanov A.V. The spin-symmetrized Hartree-Fock method. J. Struct. Chem. 1985, 25, 837 844.

Luzanov A.V., Prezhdo O.V. The spin-polarized extended Brueckner orbitals. J. Chem. Phys. 2011, 135, 094107 -1-14.

MacLachlan A.D. The pairing of electronic states in alternant hydrocarbons. Mol. Phys. 1959, 2, 271-284.

London F. Théorie quantique des courants interatomiques dans les combinaisons aromatiques. J. Phys. Radium, 1937, 8, 397-409.

MacLachlan A.D. Electrons and holes in alternant hydrocarbons. Mol. Phys. 1961, 4, 49-56.

Luzanov A.V., Babich E.N., Ivanov V.V. Gauge-invariant calculations of magnetic properties in semiempirical approaches. Application to full-CI π-electron scheme. J. Mol. Struct. (Theo-chem) 1994, 311, 211-220.

Vysotskii Y.B , Kuz'mitskii V.A., Solov'ev K.N. π-Electron Ring Currents and Magnetic Properties of Porphyrin Molecules in the MO LCAO SCF Method. Theor. Chim. Acta 1981, 59, 467-485.

Luzanov A.V., Malykhanov Y.B., Mestechkin M.M. Specific characteristics of the effect of perturbations on excited states in the MO LCAO method. Theor. Exp. Chem. 1973, 6, 589 593.

Basilevski M.V. Molecular Orbitals Method and Reactivity of Organic Molecules; Khimia: Moscow,1969 [in Russian].

Vysotskii Yu.B., Luzanov A.V. Distant spin-spin interaction in the SCF π-electron approxima-tion. J. Struct. Chem. 1975, 16, 180–186.

Geerlings P., Fias S., Stuyver T., Ayers P., Balawender R., De Prof F. New Insights and Hori-zons from the Linear Response Function in Conceptual DFT. In: Density Functional Theory; Glossman-Mitnik D., Ed.; Intech Open Access, 2019, pp. 3-29.

Aviram A., Ratner M.A. Molecular rectifiers. Chem. Phys. Lett. 1974, 29, 277–283.

Xiang D, Wang X, Jia C., Lee T, Guo X. Molecular-scale electronics: from concept to func-tion. Chem. Rev. 2016, 116, 4318–4440.

Cuevas J.C., Scheer E. Molecular Electronics: An Introduction to Theory and Experiment; World Scientific: Singapore, 2017.

Sautet P., Joachim C. Electronic interference produced by a benzene embedded in a polyacety-lene chain. Chem. Phys. Lett. 1988, 153, 511-516.

Yoshizawa K., Tada T., Staykov A. Orbital views of the electron transport in molecular de-vices. J. Am. Chem. Soc. 2008, 130, 9406–9413.

Baer R., Neuhauser. Anti-coherence based molecular electronics: XOR-gate response. Chem. Phys. 22, 281, 353–362.

Tsuji Y., Hoffmann R., Strange M., Solomon G.C. Close relation between quantum interfer-ence in molecular conductance and diradical existence. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, E413–E419.

Pedersen K.G.L., Strange M., Leijnse M., Hedegard P., Solomon G.C., Paaske J. Quantum in-terference in off-resonant transport through single molecules. Phys. Rev. B 2014, 90, 125413 1-11.

Ham N.S., Ruedenberg K. Mobile bond orders in conjugated systems. J. Chem. Phys. 1958, 29,1215–1229.

Ham N.S. Mobile Bond Orders in the Resonance and Molecular Orbital Theories. J. Chem. Phys. 1958, 29, 1229–1231.

Radenković S., Gutman I., Antić M. A case of breakdown of the Pauling bond order concept. Chem. Phys. Lett. 2014, 614, 104–109.

Luzanov A.V. Cyclic aromaticity within Hückel and quasi-correlated Hückel-like models. Kharkov Univ. Bull., Chem. Ser. 2018, 31(54), 6–20.

Mestechkin M.M. Zh. Fiz. Khim. 1961, 35, 431.

A.V. Luzanov. Extended quasi-correlated orbitals with long-range effects: Application to or-ganic single-molecule electronics. Funct. Mater. (in press)

Hoy E.P., Mazziotti D.A., Seideman T. Development and Application of a 2-electron Reduced Density Matrix Approach to Electron Transport via Molecular Junctions. J. Chem. Phys. 2017, 147, 184110-1-8.

Longuet-Higgins H. C. Some studies in molecular orbital theory. I. Resonance structures and molecular orbitals in unsaturated hydrocarbons. J. Chem. Phys. 1950, 18, 265–274.

Borden W.T., Davidson E.R. Effects of electron repulsion in conjugated hydrocarbon diradi-cals. J. Am. Chem. Soc. 1977, 99, 4587-4594.

Ovchinnikov A. Multiplicity of the ground state of large alternant organic molecules with conjugated bonds. Theor. Chim. Acta 1978, 47, 297–304.

Lieb E., Mattis D. Ordering Energy Levels of Interacting Spin Systems, J. Math. Phys. 1962, 3, 749–751.

Lieb E. Two Theorems on the Hubbard Model. Phys. Rev. Lett. 1989. 62, 1201-1204.

Nachtergaele B., Starr S. A Ferromagnetic Lieb-Mattis Theorem. Phys. Rev. Lett. 2005, 94, 057206-1-4.

Luzanov A.V. Graphene Quantum Dots in Various Many-Electron π-Models; In Nanophysics, Nanophotonics, and Applications (NANO 2017) (Springer Proceedings in Physics); Fesenko O., Yatsenko L. Eds.; Springer: Cham, 2018, Vol. 210, pp. 161–174.

Mestechkin M.M., Whyman G.E. Structural influence on ferromagnetic ordering in quasi-one-dimensional systems. Mol. Phys. 1990. 69, 775-782.

Luzanov A.V. Simplified computations of spin excitations in high-spin carbon nanoclusters and related systems. Funct. Mater. 2015, 22, 514-523.

Higuchi Y., Kusakabe K., Suzuki N., Tsuneyuki S., Yamauchi J., Akagi K., Yoshimoto Y. Nanotube-based molecular magnets with spin-polarized edge states. J. Phys.: Condens. Matter 2004, 16, 5689-5692.

Mestechkin M., Zubkov V. Bandgaps of zigzag finite-length nanotubes ab initio calculations: ground state degeneracy and single-electron spectra. Proc. SPIE 2005, 5763, 150-156.

Wu J., Hagelberg F. Magnetism in finite-sized single-walled carbon nanotubes of the zigzag type. Phys. Rev. B 2009, 79, 115436-1-9.

Pavlov М., Ermilov A. The Electronic Terms of the Finite Length Nanotubes, Generated by Edge States: A CASSCF Study. Int. J. Quantum Chem. 2011, 111, 2592-2601.

Takatsuka K., Fueno T., Yamaguchi K. Distribution of odd electrons in ground-state mole-cules. Theor. Chim. Acta 1978, 48, 175–183.

Head-Gordon M. Characterizing Unpaired Electrons from the One-Particle Density Matrix. Chem. Phys. Lett. 2003, 372, 508– 511.

Luzanov A.V., Zhikol O.A. Collectivity, shell openness indices, and complexity measures of multiconfigurational states: Computations within full CI scheme. Int. J. Quantum Chem. 2005, 104, 167-180.

Luzanov A.V., Prezhdo O.V. Analysis of multiconfigurational wave functions in terms of hole-particle distributions. J. Chem. Phys. 2006, 124, 224109-1-16.

Collatz L., Sinogowitz U. Spektren endlicher Graphen. Abh. Math. Semin. Univ. Hamb. 1957. 21, 63–77.

Sciriha I. A characterization of singular graphs. Electron. J. Linear Algebra 2007, 16, 451 462.

Luzanov A.V., Plasser F., Das A., Lischka H. Evaluation of the quasi correlated tight-binding (QCTB) model for describing polyradical character in polycyclic hydrocarbons. J. Chem. Phys. 2017, 146, 064106-1-12.

Pietropaolo A. Chirality in Biochemistry: A Computational Approach for Investigating Bio-molecule Conformations; In Ideas in Chemistry and Molecular Sciences: Where Chemistry Meets Life; Pignataro B., Ed.; Wiley-VCH: Weinheim, 2010, pp. 293-311.

Luzanov A.V., Babich E.N. Quantum-chemical quantification of molecular complexity and chirality. J. Mol. Stuct. (Theochem) 1995, 333, 279-290.

Rassat A., Fowler P.W. Any scalene triangle is the most chiral triangle, Helv. Chim. Acta 2003, 86, 1728-1740.

Avnir D., Zabrodsky H., Mezey P.G. Continuous symmetry and chirality measures. In: Ency-clopedia of Computational Chemistry; Schleyer P.v.R., Ed.; Wiley: Chichester, 1998, Vol. 4, pp. 2890–2901.

Fowler P.W., Quantification of chirality: attempting the impossible. Symmetry: Culture and Science 2005, 16, 321-334.

R. Todeschini and V. Consonni, Handbook of Molecular Descriptors;Wiley-VCH: New York, 2000.

Weinberg N., Mislow K. On chirality measures and chirality properties. Can. J. Chem. 2000, 78, 41-45.

Luzanov A.V., Nerukh D.A. Simple one-electron invariants of molecular chirality. J. Math. Chem. 2007, 41, 417-435.

Luzanov A.V., Babich E.N. Electronic and topological chirality indexes for dissymmetric mo-lecular systems. Struct. Chem. 1992, 3, 175–181.

Luzanov A.V. Positive chirality measures from chiroptical pseudoscalars: applications to car-bon-containing molecular systems. Funct. Mater. 2015, 22, 355-364.

Luzanov A.V., Kukuiev M.M. Definite chirality measures from electron torsion: application to helical molecules. Kharkov Univ. Bull., Chem. Ser. 2016, 27(50), 16-24 [in Russian].

Natarajan R., Basak S.C. Numerical characterization of molecular chirality of organic com-pounds. Curr. Comput. Aided Drug Des. 2009, 5, 1-12.

Neese F., Atanasov M., Bistoni G., Manganas D., Ye S. Chemistry and Quantum Mechanics in 2019: Give Us Insight and Numbers. J. Am. Chem. Soc. 2019, 141, 2814-2824.

Krylov A.I. The quantum chemistry of open-shell species. Rev. Comp. Chem. 2017, 30, 151 224.

Amos A.T., Hall G.G. Single determinant wave functions. Proc. R. Soc. Lond. A 1961, 263, 483−493.

Löwdin P.-O. Band theory, valence bond, and tight-binding calculations. J. Appl. Phys. 1962, 33, 251–280.

Karadakov P. An extension of the pairing theorem. Int. J. Quantum Chem. 1985, 27, 699-707.

Mayer I. Löwdin’s pairing theorem and some of its applications. Mol. Phys. 2010, 108, 3273−3278.

Klein D.J. Ground state features for Heisenberg models. J. Chem. Phys. 1982, 77, 3098–3100.

Tian G.S. Ferrimagnetism in a One-dimensional Heisenberg Model. Phys. Rev. B 1997, 56, 5355-5358.

Löwdin P.-O. On the pairing theorem and its extension. Isr. J. Chem. 1991, 31, 297-302.

Estrada E. Back to the Origins. Using Matrix Functions of Hückel Hamiltonian for Quantum Interference. In Quantum Chemistry at the Dawn of the 21st Century; Chakraborty T., Carbo-Dorca R., Eds.; Apple Academic Press: Oakville, ON, 2018; pp. 445−468.

Kaempffer F.A. Concepts in Quantum Mechanics; Academic Press: New York, 1965.

Bogolubov N.N., Bogolubov N.N. Jr. Introduction to Quantum Statistical Mechanics; Singa-pore: World Scientific, 2009.

Potts R.B. Molecular Orbital Theory of Alternant Hydrocarbons. J. Chem.Phys. 1953, 21, 758 759.

Wang Y., Fan Y.-Z. The least eigenvalue of signless Laplacian of graphs under perturbation. Linear Algebra Appl. 2012, 436, 2084–2092.

Fallat S., Fan Y.-Z. Bipartiteness and the least eigenvalue of signless Laplacian of graphs. Lin-ear Algebra Appl. 2012, 436, 3254–3267.

Bauer F., Jost J., Bipartite and neighborhood graphs and the spectrum of the normalized graph Laplace operator. Comm. Anal. Geom. 2013, 21, 787–845.

Luzanov A.V Kirchhoff and electron curvature indexes for SiC nanoclusters. Funct. Mater. 2017, 24, 434-441.

Опубліковано
2019-06-14
Цитовано
Як цитувати
Luzanov, A. V. (2019). Симетрія парності в ряді проблем квантової та структурної хімії. Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Хімія», (32), 6-37. https://doi.org/10.26565/2220-637X-2019-32-01