Проблеми експериментального та теоретичного дослідження міжчастинкових взаємодій у сумішах імідазолієвих іонних рідин з молекулярними розчинниками

  • Bogdan A. Marekha Харківський національний університет імені В.Н. Каразіна
  • Oleg N. Kalugin Харківський національний університет імені В.Н. Каразіна https://orcid.org/0000-0003-3273-9259
  • Abdenacer Idrissi Унiверситет Лiлль - 1 https://orcid.org/0000-0002-6924-6434
  • M. Bria Унiверситет Лiлль - 1
Ключові слова: іонна рідина, 1-бутил-3-метилімідазолій-катіон, молекулярний розчинник, ацетонітрил, ІЧ та КР-спектроскопія, ЯМР-спектроскопія, квантово-хімічні розрахунки, молекулярно-динамічне моделювання, дифузія

Анотація

Розглянуто стратегію дослідження різних типів міжчастинкових взаємодій (іон-іонних, іон-молекулярних та міжмолекулярних) та явищ (іонна асоціація та сольватація) у бінарних сумішах іонних рідин (ІР) з молекулярними розчинниками. Для дослідження локалізованих взаємодій, спряжених з перерозподілом електронної густини, логічно використовувати комбінацію спектральних методів (ЯМР, ІЧ, КР) та квантово-хімічних розрахунків сумісно з теорією "Атоми в молекулах" QTAIM. Для вивчення ненаправлених багаточастинкових взаємодій, статистичної мікроструктури та мікродинаміки, вбачається доцільним комплементарне використання методів розсіяння (рентгенівських променів та нейтронів), дифузійних методів (ЯМР-дифузія, квазіупружне розсіяння нейтронів) та молекулярно-динамічного моделювання.

На прикладі сумішей ІЖ з 1-бутил-3-метилімідазолієм та ацетонітрила встановлено, що специфічні катіон-аніонні взаємодії визначаються структурою аніона та локалізовані на імідазолієвому кільці катіона. Співвідношення коефіцієнтів самодифузії катіона та аніона інвертує зі зміною складу та складним чином пов’язане з іон-іонними асоціативними рівновагами.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

Hallett J. P., Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2 // Chem. Rev. – 2011. – V. 111. Iss. 5. – P. 3508-3576.

Torimoto T., Tsuda T., Okazaki K. I., Kuwabata S. New frontiers in materials science opened by ionic liquids // Adv. Mater. – 2010. – V. 22. Iss. 11. – P. 1196-1221.

Olivier-Bourbigou H., Magna L., Morvan D. Ionic liquids and catalysis: recent progress from knowledge to applications // Appl. Catal., A: General. – 2010. – V. 373. Iss. 1-2. – P. 1-56.

Giernoth R. Task-specific ionic liquids // Angew. Chem. Int. Ed. – 2010. – V. 49. Iss. 16. – P. 2834-2839.

Patel D. D., Lee J.-M. Applications of ionic liquids // Chem. Rec. – 2012. – V. 12. Iss. 3. – P. 329-355.

Stoppa A., Hunger J., Buchner R. Conductivities of binary mixtures of ionic liquids with polar solvents // J. Chem. Eng. Data. – 2009. – V. 54. Iss. 2. – P. 472-479.

Wang H., Liu S., Huang K., Yin X., Liu Y., Peng S. BMIMBF4 ionic liquid mixtures electro-lyte for Li-ion batteries // Int. J. Electrochem. Sci. – 2012. – V. 7. Iss. 2. – P. 1688-1698.

Rizzuto A. M., Pennington R. L., Sienerth K. D. Study of the BMIM-PF6: acetonitrile binary mixture as a solvent for electrochemical studies involving CO2 // Electrochim. Acta. – 2011. – V. 56. Iss. 14. – P. 5003-5009.

Chagnes A., Diaw M., Carré B., Willmann P., Lemordant D. Imidazolium-organic solvent mixtures as electrolytes for lithium batteries // J. Power Sources. – 2005. – V. 145. Iss. 1. – P. 82-88.

Trivedi S., Sarkar A., Pandey S. Solvatochromic absorbance probe behavior within 1-butyl-3-methylimidazolium hexafluorophosphate + propylene carbonate: preferential solvation or sol-vent–solvent interaction? // Chem. Eng. J. – 2009. – V. 147. Iss. 1. – P. 36-42.

Wang J., Tian Y., Zhao Y., Zhuo K. A volumetric and viscosity study for the mixtures of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid with acetonitrile, dichloromethane, 2-butanone and N, N - dimethylformamide // Green Chem. – 2003. – V. 5. Iss. 5. – P. 618-622.

Li W., Zhang Z., Han B., Hu S., Xie Y., Yang G. Effect of water and organic solvents on the ionic dissociation of ionic liquids // J. Phys. Chem. B. – 2007. – V. 111. Iss. 23. – P. 6452-6456.

Zafarani-Moattar M. T., Majdan-Cegincara R. Viscosity, density, speed of sound, and refrac-tive index of binary mixtures of organic solvent + ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate at 298.15 K // J. Chem. Eng. Data. – 2007. – V. 52. Iss. 6. – P. 2359-2364.

Stoppa A., Hunger J., Hefter G., Buchner R. Structure and dynamics of 1-N-alkyl-3-N-methylimidazolium tetrafluoroborate + acetonitrile mixtures // J. Phys. Chem. B. – 2012. – V. 116. Iss. 25. – P. 7509-7521.

Wright D., El-Shall M. S. Monte Carlo simulation of acetonitrile clusters [CH3CN]N, N=2–256: melting transitions and even/odd character of small clusters (N=2–9), heat capacities, density profiles, fractal dimension, intracluster dimerization, and dipole orientation // J. Chem. Phys. – 1994. – V. 100. Iss. 5. – P. 3791-3802.

Cabaleiro-Lago E. M., Hermida-Ramón J. M., Peña-Gallego A., Martı́nez-Núñez E., Fernán-dez-Ramos A. Intermolecular interactions and cooperative effects in acetonitrile clusters. An ab initio molecular orbital study // J. Mol. Struc. – THEOCHEM. – 2000. – V. 498. Iss. 1–3. – P. 21-28.

Mennucci B., da Silva C. O. A quantum mechanical strategy to investigate the structure of liquids: the cases of acetonitrile, formamide, and their mixture // J. Phys. Chem. B. – 2008. – V. 112. Iss. 22. – P. 6803-3813.

Nigam S., Majumder C. Growth pattern and electronic properties of acetonitrile clusters: a density functional study // J. Chem. Phys. – 2008. – V. 128. Iss. 21. – P. 214307.

Angenendt K., Johansson P. Ionic liquid structures from large density functional theory calcu-lations using mindless configurations // J. Phys. Chem. C. – 2010. – V. 114. Iss. 48. – P. 20577-20582.

Tokuda H., Tsuzuki S., Susan M. A. B. H., Hayamizu K., Watanabe M. How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties // J. Phys. Chem. B. – 2006. – V. 110. Iss. 39. – P. 19593-19600.

Avent A. G., Chaloner P. A., Day M. P., Seddon K. R., Welton T. Evidence for hydrogen bonding in solutions of 1-ethyl-3-methylimidazolium halides, and its implications for room-temperature halogenoaluminate(III) ionic liquids // J. Chem. Soc., Dalton Trans. – 1994. – 23. – P. 3405-3413.

Bonhôte P., Dias A.-P., Papageorgiou N., Kalyanasundaram K., Grätzel M. Hydrophobic, highly conductive ambient-temperature molten salts // Inorg. Chem. – 1996. – V. 35. Iss. 5. – P. 1168-1178.

Consorti C. S., Suarez P. A. Z., de Souza R. F., Burrow R. A., Farrar D. H., Lough A. J., Loh W., da Silva L. H. M., Dupont J. Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution // J. Phys. Chem. B. – 2005. – V. 109. Iss. 10. – P. 4341-4349.

Aoun B., Goldbach A., Gonzalez M. A., Kohara S., Price D. L., Saboungi M.-L. Nanoscale heterogeneity in alkyl-methylimidazolium bromide ionic liquids // J. Chem. Phys. – 2011. – V. 134. Iss. 10. – P. 104509.

Triolo A., Mandanici A., Russina O., Rodriguez-Mora V., Cutroni M., Hardacre C., Nieuwen-huyzen M., Bleif H.-J., Keller L., Ramos M. A. Thermodynamics, structure, and dynamics in room temperature ionic liquids: the case of 1-butyl-3-methyl imidazolium hexafluorophos-phate ([bmim][PF6]) // J. Phys. Chem. B. – 2006. – V. 110. Iss. 42. – P. 21357-21364.

Russina O., Beiner M., Pappas C., Russina M., Arrighi V., Unruh T., Mullan C. L., Hardacre C., Triolo A. Temperature dependence of the primary relaxation in 1-hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide // J. Phys. Chem. B. – 2009. – V. 113. Iss. 25. – P. 8469-8474.

Mamontov E., Luo H., Dai S. Proton dynamics in N,N,N′,N′-tetramethylguanidinium bis(perfluoroethylsulfonyl)imide protic ionic liquid probed by quasielastic neutron scattering // J. Phys. Chem. B. – 2008. – V. 113. Iss. 1. – P. 159-169.

Kofu M., Someya T., Tatsumi S., Ueno K., Ueki T., Watanabe M., Matsunaga T., Shibayama M., Sakai V. G., Tyagi M., Yamamuro O. Microscopic insights into ion gel dynamics using neutron spectroscopy // Soft Matter. – 2012. – V. 8. Iss. 30. – P. 7888-7897.

Hoarfrost M. L., Tyagi M., Segalman R. A., Reimer J. A. Proton hopping and long-range transport in the protic ionic liquid [Im][TFSI], probed by pulsed-field gradient NMR and quasi-elastic neutron scattering // J. Phys. Chem. B. – 2012. – V. 116. Iss. 28. – P. 8201-8209.

De Roche J., Gordon C. M., Imrie C. T., Ingram M. D., Kennedy A. R., Lo Celso F., Triolo A. Application of complementary experimental techniques to characterization of the phase be-havior of [C16mim][PF6] and [C14mim][PF6] // Chemistry of Materials. – 2003. – V. 15. Iss. 16. – P 3089-3097.

Aoun B., González M. A., Ollivier J., Russina M., Izaola Z., Price D. L., Saboungi M.-L. Translational and reorientational dynamics of an imidazolium-based ionic liquid // J. Phys. Chem. Lett. – 2010. – V. 1. Iss. 17. – P. 2503-2507.

Triolo A., Russina O., Arrighi V., Juranyi F., Janssen S., Gordon C. M. Quasielastic neutron scattering characterization of the relaxation processes in a room temperature ionic liquid // J. Chem. Phys. – 2003. – V. 119. Iss. 16. – P. 8549-8557.

Bader R. F. W. A quantum theory of molecular structure and its applications // Chem. Rev. – 1991. – V. 91. Iss. 5. – P. 893-928.

Bader R. F. W. Atoms in molecules // Acc. Chem. Res. – 1985. – V. 18. Iss. 1. – P. 9-15.

Umebayashi Y., Mitsugi T., Fukuda S., Fujimori T., Fujii K., Kanzaki R., Takeuchi M., Ishi-guro S.-I. Lithium ion solvation in room-temperature ionic liquids involving bis(trifluoromethanesulfonyl) imide anion studied by Raman spectroscopy and DFT calcula-tions // J. Phys. Chem. B. – 2007. – V. 111. Iss. 45. – P. 13028-13032.

Chagnes A., Allouchi H., Carré B., Lemordant D. Thermal analysis of γ-butyrolactone +1 bu-tyl-3-methyl-imidazolium ionic liquids mixtures // Solid State Ionics. – 2005. – V. 176. Iss. 15–16. – P. 1419-1427.

Angenendt K., Johansson P. Ionic liquid based lithium battery electrolytes: charge carriers and interactions derived by density functional theory calculations // J. Phys. Chem. B. – 2011. – V. 115. Iss. 24. – P. 7808-7813.

Huang J., Sumpter B. G., Meunier V. A universal model for nanoporous carbon supercapaci-tors applicable to diverse pore regimes, carbon materials, and electrolytes // Chem. Eur. J. – 2008. – V. 14. Iss. 22. – P. 6614-6626.

Noda A., Hayamizu K., Watanabe M. Pulsed-Gradient Spin−Echo 1H and 19F NMR Ionic Diffusion Coefficient, Viscosity, and Ionic Conductivity of Non-Chloroaluminate Room-Temperature Ionic Liquids // J. Phys. Chem. B. – 2001. – V. 105. Iss. 20. – P. 4603-4610.

Shim Y., Kim H. J. Nanoporous carbon supercapacitors in an ionic liquid: a computer simula-tion study // ACS Nano. – 2010. – V. 4. Iss. 4. – P. 2345-2355.

Singh R., Monk J., Hung F. R. A computational study of the behavior of the ionic liquid [BMIM+][PF6−] confined inside multiwalled carbon nanotubes // J. Phys. Chem. C. – 2010. – V. 114. Iss. 36. – P. 15478-15485.

Feng G., Qiao R., Huang J., Dai S., Sumpter B. G., Meunier V. The importance of ion size and electrode curvature on electrical double layers in ionic liquids // Phys. Chem. Chem. Phys. – 2011. – V. 13. Iss. 3. – P. 1152.

Merlet C., Rotenberg B., Madden P. A., Taberna P.-L., Simon P., Gogotsi Y., Salanne M. On the molecular origin of supercapacitance in nanoporous carbon electrodes // Nature Materials. – 2012. – V. 11. Iss. 4. – P. 306-310.

Izutsu K. Electrochemistry in Nonaqueous Solutions. – Weinheim: John Wiley & Sons, 2010. – 432 p.

Chaban V. V., Voroshylova I. V., Kalugin O. N., Prezhdo O. V. Acetonitrile boosts conduc-tivity of imidazolium ionic liquids // J. Phys. Chem. B. – 2012. – V. 116. Iss. 26. – P. 7719-7727.

Hunt P. A., Kirchner B., Welton T. Characterising the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair // Chem. Eur. J. – 2006. – V. 12. Iss. 26. – P. 6762-6775.

Hunt P. A., Gould I. R. Structural characterization of the 1-butyl-3-methylimidazolium chlo-ride ion pair using ab initio methods // J. Phys. Chem. A. – 2006. – V. 110. Iss. 6. – P. 2269-2282.

Kirchner B. Ionic liquids from theoretical investigations, in Topics in Current Chemistry / Ionic Liquids. – Berlin/Heidelberg: Springer-Verlag, 2010. – P. 213-262.

Koch U., Popelier P. L. A. Characterization of C-H-O hydrogen bonds on the basis of the charge density // J. Phys. Chem. – 1995. – V. 99. Iss. 41. – P. 9747-9754.

Keith T. A. AIMAll (Version 10.05.04). 2010.

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. J., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Far-kas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, Revision B.01. 2010.

Chen W.-T., Hsu W.-Y., Lin M.-Y., Tai C.-C., Wang S.-P., Sun I. W. Isolated BMI+ cations are more than isolated PF6– anions in the room temperature 1-butyl-3-methylimidazolium hexafluorophosphate (BMI-PF6) ionic liquid // J. Chin. Chem. Soc. – 2010. – V. 57. Iss. 6. – P. 1293-1298.

López-Pastor M., Ayora-Cañada M. J., Valcárcel M., Lendl B. Association of methanol and water in ionic liquids elucidated by infrared spectroscopy using two-dimensional correlation and multivariate curve resolution // J. Phys. Chem. B. – 2006. – V. 110. Iss. 22. – P. 10896-10902.

Buffeteau T., Grondin J., Danten Y., Lassègues J.-C. Imidazolium-based ionic liquids: quanti-tative aspects in the far-infrared region // J. Phys. Chem. B. – 2010. – V. 114. Iss. 22. – P. 7587-7592.

Umebayashi Y., Jiang J.-C., Lin K.-H., Shan Y.-L., Fujii K., Seki S., Ishiguro S.-I., Lin S. H., Chang H.-C. Solvation and microscopic properties of ionic liquid/acetonitrile mixtures probed by high-pressure infrared spectroscopy // J. Chem. Phys. – 2009. – V. 131. Iss. 23. – P. 234502.

Garcia H. C., de Oliveira L. F. C., Nicolau B. G., Ribeiro M. C. C. Raman spectra of acetoni-trile in imidazolium ionic liquids // J. Raman Spectrosc. – 2010. – V. 41. Iss. 12. – P. 1720-1724.

Andanson J.-M., Jutz F., Baiker A. Supercritical CO2/ionic liquid systems: what can we ex-tract from infrared and raman spectra? // J. Phys. Chem. B. – 2009. – V. 113. Iss. 30. – P. 10249-10254.

Singh T., Kumar A. Cation–anion–water interactions in aqueous mixtures of imidazolium based ionic liquids // Vib. Spectrosc. – 2011. – V. 55. Iss. 1. – P. 119-125.

Zhang L., Xu Z., Wang Y., Li H. Prediction of the solvation and structural properties of ionic liquids in water by two-dimensional correlation spectroscopy // J. Phys. Chem. B. – 2008. – V. 112. Iss. 20. – P. 6411-6419.

Aleksa V., Kausteklis J., Klimavicius V., Gdaniec Z., Balevicius V. Raman and NMR spec-troscopy study of liquid crystalline ionogel phase in ionic liquid/H2O mixtures: the states of water // J. Mol. Struct. – 2011. – V. 993. Iss. 1–3. – P. 91-96.

Spickermann C., Thar J., Lehmann S. B. C., Zahn S., Hunger J., Buchner R., Hunt P. A., Wel-ton T., Kirchner B. Why are ionic liquid ions mainly associated in water? A Car–Parrinello study of 1-ethyl-3-methyl-imidazolium chloride water mixture // J. Chem. Phys. – 2008. – V. 129. Iss. 10. – P. 104505.

Marekha B. A., Kalugin O. N., Idrissi A., Trachevskii V. V. Microscopic structure of ion pairs formed by [Bmim+BF4-] and [Bmim+TfO-] // Book of abstracts of 'Molecular assoociation in fluid phases and at fluid interfaces. EMLG/JMLG Annual Meeting 2012'. – Eger, Hungary, 5-9 September, 2012. – P. 39.

Maginn E. J. Atomistic simulation of the thermodynamic and transport properties of ionic liq-uids // Acc. Chem. Res. – 2007. – V. 40. Iss. 11. – P. 1200-1207.

Wu X., Liu Z., Huang S., Wang W. Molecular dynamics simulation of room-temperature ionic liquid mixture of [bmim][BF4] and acetonitrile by a refined force field // Phys. Chem. Chem. Phys. – 2005. – V. 7. Iss. 14. – P. 2771-2779.

Chaban V. Polarizability versus mobility: atomistic force field for ionic liquids // Phys. Chem. Chem. Phys. – 2011. – V. 13. Iss. 35. – P. 16055-16062.

Chaban V. V., Prezhdo O. V. A new force field model of 1-butyl-3-methylimidazolium tetra-fluoroborate ionic liquid and acetonitrile mixtures // Phys. Chem. Chem. Phys. – 2011. – V. 13. Iss. 43. – P. 19345-19354.

Chaban V. V., Voroshylova I. V., Kalugin O. N. A new force field model for the simulation of transport properties of imidazolium-based ionic liquids // Phys. Chem. Chem. Phys. – 2011. – V. 13. Iss. 17. – P. 7910-7920.

Chaban V., Voroshylova I. V., Kalugin O. The phenomenological account for electronic po-larization in ionic liquid // ECS Trans. – 2011. – V. 33. Iss. 28. – P. 43-55.

Shimomura T., Fujii K., Takamuku T. Effects of the alkyl-chain length on the mixing state of imidazolium-based ionic liquid-methanol solutions // Phys. Chem. Chem. Phys. – 2010. – V. 12. Iss. 38. – P. 12316-12324.

Singh T., Kumar A. Aggregation behavior of ionic liquids in aqueous solutions: effect of alkyl chain length, cations, and anions // J. Phys. Chem. B. – 2007. – V. 111. Iss. 27. – P. 7843-7851.

Takamuku T., Honda Y., Fujii K., Kittaka S. Aggregation of imidazolium ionic liquids in mo-lecular liquids studied by small-angle neutron scattering and NMR // Anal. Sci. – 2008. – V. 24. Iss. 10. – P. 1285-1290.

Опубліковано
2012-12-03
Цитовано
Як цитувати
Marekha, B. A., Kalugin, O. N., Idrissi, A., & Bria, M. (2012). Проблеми експериментального та теоретичного дослідження міжчастинкових взаємодій у сумішах імідазолієвих іонних рідин з молекулярними розчинниками. Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Хімія», (21), 134-146. https://doi.org/10.26565/2220-637X-2012-21-11