Молекулярно-динамічне моделювання взаємодії полівінілового спирту з наночастинкою срібла

  • D. A. Pasko Харківський національний університет імені В.Н. Каразіна
  • Alexander V. Kyrychenko Харківський національний університет імені В.Н. Каразіна https://orcid.org/0000-0002-6223-0990
Ключові слова: nanoparticle, silver, PVA, molecular dynamics simulations

Анотація

Методом класичного молекулярно-динамічного (МД) моделювання досліджено механізм стабілізації наночастинки срібла полівініловим спиртом (ПВC) у водному розчині. Розроблено МД модель силового поля наночастинки срібла, стабілізованої ПВС полімером зі змінюваним ступенем полімеризації. Досліджено кінетику самоорганізації ПВС полімеру, що складається із 880 мономерних фрагментів (ПВС880), навколо наночастинки срібла квазісферичної форми з діаметром 3,9 нм. Розглянуто структуру та фізико-хімічні властивості адсорбованої ПВС матриці. Показано, що ПВС адсорбується на поверхню срібла переважно завдяки нековалентній взаємодії з гідроксильними групами. Встановлено, що при адсорбції на неорганічне ядро, з зазначеним діаметром, ПВС880 екранує наночастинку від контакту з водним середовищем на 84 %.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

Sharma V. K., Yngard R. A. and Lin Y. Silver nanoparticles: Green synthesis and their antim-icrobial activities // Adv. Colloid Interface Sci. — 2009. — V. 145, № 1–2. — P. 83-96.

Eckhardt S., Brunetto P. S., Gagnon J., Priebe M., Giese B. and Fromm K. M. Nanobio silver: Its interactions with peptides and bacteria, and its uses in medicine // Chem. Rev. — 2013. — V. 113, № 7. — P. 4708-4754.

Lohse S. E. and Murphy C. J. Applications of colloidal inorganic nanoparticles: From medi-cine to energy // J. Am. Chem. Soc. — 2012. — V. 134, № 38. — P. 15607-15620.

Sotiriou G. A. and Pratsinis S. E. Antibacterial activity of nanosilver ions and particles // En-viron. Sci. Technol. — 2010. — V. 44, № 14. — P. 5649-5654.

Kittler S., Greulich C., Diendorf J., Köller M. and Epple M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions // Chem. Ma-ter. — 2010. — V. 22, № 16. — P. 4548-4554.

Liu J., Sonshine D. A., Shervani S. and Hurt R. H. Controlled release of biologically active silver from nanosilver surfaces // ACS Nano — 2010. — V. 4, № 11. — P. 6903-6913.

Sotiriou G. A., Meyer A., Knijnenburg J. T. N., Panke S. and Pratsinis S. E. Quantifying the origin of released Ag+ ions from nanosilver // Langmuir — 2012. — V. 28, № 45. — P. 15929-15936.

Sapsford K. E., Algar W. R., Berti L., Gemmill K. B., Casey B. J., Oh E., Stewart M. H. and Medintz I. L. Functionalizing nanoparticles with biological molecules: Developing chemis-tries that facilitate nanotechnology // Chem. Rev. — 2013. — V. 113, № 3. — P. 1904-2074.

Tao A. R., Habas S. and Yang P. Shape control of colloidal metal nanocrystals // Small — 2008. — V. 4, № 3. — P. 310-325.

Xia Y., Xiong Y., Lim B. and Skrabalak S. E. Shape-controlled synthesis of metal nanocrys-tals: Simple chemistry meets complex physics? // Angew. Chem., Int. Ed. — 2009. — V. 48, № 1. — P. 60-103.

Bolintineanu D. S., Lane J. M. D. and Grest G. S. Effects of functional groups and ionization on the structure of alkanethiol-coated gold nanoparticles // Langmuir — 2014. — V. 30, № 37. — P. 11075-11085.

Ghorai P. K. and Glotzer S. C. Molecular dynamics simulation study of self-assembled monolayers of alkanethiol surfactants on spherical gold nanoparticles // J. Phys. Chem. C — 2007. — V. 111, № 43. — P. 15857-15862.

Kyrychenko A., Karpushina G. V., Bogatyrenko S. I., Kryshtal A. P. and Doroshenko A. O. Preparation, structure, and a coarse-grained molecular dynamics model for dodecanethiol-stabilized gold nanoparticles // Comput. Theor. Chem. — 2011. — V. 977, № 1–3. — P. 34-39.

Kyrychenko A., Karpushina G. V., Svechkarev D., Kolodezny D., Bogatyrenko S. I., Kryshtal A. P. and Doroshenko A. O. Fluorescence probing of thiol-functionalized gold nanoparticles: Is alkylthiol coating of a nanoparticle as hydrophobic as expected? // J. Phys. Chem. C — 2012. — V. 116, № 39. — P. 21059-21068.

Kyrychenko A., Korsun O. M., Gubin I. I., Kovalenko S. M. and Kalugin O. N. Atomistic simulations of coating of silver nanoparticles with poly(vinylpyrrolidone) oligomers: Effect of oligomer chain length // J. Phys. Chem. C — 2015. — V. 119, № 14. — P. 7888-7899.

Milano G., Santangelo G., Ragone F., Cavallo L. and Di Matteo A. Gold nanoparticle/polymer interfaces: All atom structures from molecular dynamics simulations // J. Phys. Chem. C — 2011. — V. 115, № 31. — P. 15154-15163.

Zhang L., Becton M. and Wang X. Designing nanoparticle translocation through cell mem-branes by varying amphiphilic polymer coatings // J. Phys. Chem. B — 2015. — V. 119, № 9. — P. 3786-3794.

Mdluli P. S., Sosibo N. M., Mashazi P. N., Nyokong T., Tshikhudo R. T., Skepu A. and van der Lingen E. Selective adsorption of PVP on the surface of silver nanoparticles: A molecular dynamics study // J. Mol. Struct. — 2011. — V. 1004, № 1–3. — P. 131-137.

Kyrychenko A. Nanogold decorated by pHLIP peptide: Comparative force field study // Phys. Chem. Chem. Phys. — 2015. — V. 17, № 19. — P. 12648-12660.

Li R., Chen R., Chen P., Wen Y., Ke P. C. and Cho S. S. Computational and experimental characterizations of silver nanoparticle–apolipoprotein biocorona // J. Phys. Chem. B — 2013. — V. 117, № 43. — P. 13451-13456.

Chi C., Vargas-Lara F., Tkachenko A. V., Starr F. W. and Gang O. Internal structure of nanoparticle dimers linked by DNA // ACS Nano — 2012. — V. 6, № 8. — P. 6793-6802.

Chang M., Kim T., Park H.-W., Kang M., Reichmanis E. and Yoon H. Imparting chemical stability in nanoparticulate silver via a conjugated polymer casing approach // ACS Appl. Ma-ter. Interf. — 2012. — V. 4, № 8. — P. 4357-4365.

Gagner J. E., Shrivastava S., Qian X., Dordick J. S. and Siegel R. W. Engineering nanomateri-als for biomedical applications requires understanding the nano-bio interface: A perspective // J. Phys. Chem. Lett. — 2012. — V. 3, № 21. — P. 3149-3158.

Cheng D., Wang W., Cao D. and Huang S. Simulating synthesis of metal nanorods, nano-plates, and nanoframes by self-assembly of nanoparticle building blocks // J. Phys. Chem. C — 2009. — V. 113, № 10. — P. 3986-3997.

Angulo A. M. and Noguez C. Atomic structure of small and intermediate-size silver nano-clusters // J. Phys. Chem. A — 2008. — V. 112, № 26. — P. 5834-5838.

Lussier D. T., Kakalis N. M. P. and Ventikos Y., Molecular dynamics modeling of nanodrop-lets and nanoparticles, in Multiscale modeling of particle interactions. 2010, John Wiley & Sons, Inc. p. 151-183.

Marzbanrad E., Hu A., Zhao B. and Zhou Y. Room temperature nanojoining of triangular and hexagonal silver nanodisks // J. Phys. Chem. C — 2013. — V. 117, № 32. — P. 16665-16676.

Tian Z.-A., Liu R.-S., Zheng C.-X., Liu H.-R., Hou Z.-Y. and Peng P. Formation and evolu-tion of metastable BCC phase during solidification of liquid Ag: A molecular dynamics simu-lation study // J. Phys. Chem. A — 2008. — V. 112, № 48. — P. 12326-12336.

Medrano L. R. and Landauro C. V. Influence of chemical disorder on the electronic level spacing distribution of the nanoparticle: A tight-binding study // Phys. B: Condensed Matter — 2013. — V. 412, № 0. — P. 122-125.

Tian Z.-A., Liu R.-S., Peng P., Hou Z.-Y., Liu H.-R., Zheng C.-X., Dong K.-J. and Yu A.-B. Freezing structures of free silver nanodroplets: A molecular dynamics simulation study // Phys. Lett. A — 2009. — V. 373, № 18–19. — P. 1667-1671.

Gracia-Pinilla M. Á., Pérez-Tijerina E., García J. A., Fernández-Navarro C., Tlahuice-Flores A., Mejía-Rosales S., Montejano-Carrizales J. M. and José-Yacamán M. On the structure and properties of silver nanoparticles // J. Phys. Chem. C — 2008. — V. 112, № 35. — P. 13492-13498.

Khomenko A. V. and Prodanov N. V. Study of friction of Ag and Ni nanoparticles: An atom-istic approach // J. Phys. Chem. C — 2010. — V. 114, № 47. — P. 19958-19965.

Heinz H., Vaia R. A., Farmer B. L. and Naik R. R. Accurate simulation of surfaces and inter-faces of face-centered cubic metals using 12−6 and 9−6 Lennard-Jones potentials // J. Phys. Chem. C — 2008. — V. 112, № 44. — P. 17281-17290.

Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E. and Berendsen H. J. C. Gromacs: Fast, flexible, and free // J. Comput. Chem. — 2005. — V. 26, № 16. — P. 1701-1718.

Hermans J., Berendsen H. J. C., Van Gunsteren W. F. and Postma J. P. M. A consistent em-pirical potential for water–protein interactions // Biopolymers — 1984. — V. 23, № 8. — P. 1513-1518.

Tesei G., Paradossi G. and Chiessi E. Poly(vinyl alcohol) oligomer in dilute aqueous solution: A comparative molecular dynamics simulation study // J. Phys. Chem. B — 2012. — V. 116, № 33. — P. 10008-10019.

Schuler L. D., Daura X. and van Gunsteren W. F. An improved Gromos96 force field for ali-phatic hydrocarbons in the condensed phase // J. Comput. Chem. — 2001. — V. 22, № 11. — P. 1205-1218.

Xia X., Zeng J., Zhang Q., Moran C. H. and Xia Y. Recent developments in shape-controlled synthesis of silver nanocrystals // J. Phys. Chem. C — 2012. — V. 116, № 41. — P. 21647-21656.

Quan Z., Wang Y. and Fang J. High-index faceted noble metal nanocrystals // Acc. Chem. Res. — 2013. — V. 46, № 2. — P. 191-202.

Kovalenko M. V., Manna L., Cabot A., Hens Z., Talapin D. V., Kagan C. R., Klimov V. I., Rogach A. L., Reiss P., Milliron D. J., Guyot-Sionnnest P., Konstantatos G., Parak W. J., Hyeon T., Korgel B. A., Murray C. B., and Heiss W. Prospects of nanoscience with nanocrys-tals // ACS Nano — 2015. — V. 9, № 2. — P. 1012-1057.

Chiessi E., Cavalieri F. and Paradossi G. Water and polymer dynamics in chemically cross-linked hydrogels of poly(vinyl alcohol): A molecular dynamics simulation study // J. Phys. Chem. B — 2007. — V. 111, № 11. — P. 2820-2827.

Rossinsky E., Tarmyshov K. B., Böhm M. C. and Müller-Plathe F. Properties of polyvinyl al-cohol oligomers: A molecular dynamics study // Macromolecular Theory and Simulations — 2009. — V. 18, № 9. — P. 545-552.

Wu C. Cooperative behavior of poly(vinyl alcohol) and water as revealed by molecular dy-namics simulations // Polymer — 2010. — V. 51, № 19. — P. 4452-4460.

Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A. and Haak J. R. Molecu-lar dynamics with coupling to an external bath // J. Chem. Phys. — 1984. — V. 81, № 8. — P. 3684-3690.

Humphrey W., Dalke A. and Schulten K. VMD: Visual molecular dynamics // J. Mol. Graph-ics — 1996. — V. 14, № 1. — P. 33-38.

Verde A. V., Acres J. M. and Maranas J. K. Investigating the specificity of peptide adsorption on gold using molecular dynamics simulations // Biomacromolecules — 2009. — V. 10, № 8. — P. 2118-2128.

Опубліковано
2015-12-29
Цитовано
Як цитувати
Pasko, D. A., & Kyrychenko, A. V. (2015). Молекулярно-динамічне моделювання взаємодії полівінілового спирту з наночастинкою срібла. Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Хімія», (25), 29-38. https://doi.org/10.26565/2220-637X-2015-25-04