Молекулярно-динамічне моделювання наночастинок срібла кубічної та біпірамідальної форми

  • Margaret M. Blazhynska Харківський національний університет імені В.Н. Каразіна https://orcid.org/0000-0003-0749-8772
  • Alexander V. Kyrychenko Харківський національний університет імені В.Н. Каразіна https://orcid.org/0000-0002-6223-0990
  • Oleg N. Kalugin Харківський національний університет імені В.Н. Каразіна https://orcid.org/0000-0003-3273-9259
Ключові слова: срібло, наночастинка, нанокуб, нанобіпіраміда, ГЦК, гострокутний, молекулярно-динамічне моделювання

Анотація

У даній статті розглянуті кристалічні структури гострокутних наночастинок срібла із досконалою гранецентрованою кубічною (ГЦК) упаковкою атомів та їх здатність до макроскопічної морфологічної стабільності. Гострокутні наночастинки срібла представлені у формі кубів та біпірамід, та порівнюються із квазі-сферичними наночастинками тієї ж природи, за допомогою методу класичного молекулярно-динамічного (МД) моделювання. Була досліджена серія різнорозмірних нанокубів (AgNC) та нанобіпірамід (AgNB) срібла, що містять від 44 до 1156 атомів. Проведене МД моделювання свідчить про те, що початкові досконалі кристалічні структури, які складаються із більш ніж 256 атомів, зберігають свою первинну форму. Винятковим є той факт, що для AgNC, які складаються із менш ніж 172 атомів, була зафіксована миттєва втрата кубічної форми і повне перетворення у аморфну структуру. Проте, для нанобіпірамід та квазісферичних наночастинок така морфологічна втрата не відбувалася. Аналіз енергії зв’язку найбільш віддалених атомів срібла від центру вказує на те, що перетворення досконалої кубічної форми в округлу та згладжену відбувається за рахунок зміни величини гострого кута та координації вершинних атомів, що пов’язано із схильністю кутових атомів до збільшення своїх координаційних чисел.

Завантаження

##plugins.generic.usageStats.noStats##

Посилання

Eckhardt S., Brunetto P. S., Gagnon J., Priebe M., Giese B. and Fromm K. M. Nanobio silver: Its interactions with peptides and bacteria, and its uses in medicine. Chem. Rev. 2013. Vol. 113, № 7. P. 4708-4754.

Rycenga M., Cobley C. M., Zeng J., Li W., Moran C. H., Zhang Q., Qin D. and Xia Y. Con-trolling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011. Vol. 111, № 6. P. 3669-3712.

Stamplecoskie K., Silver nanoparticles: From bulk material to colloidal nanoparticles, in Sil-ver Nanoparticle Applications: The Fabrication and Design of Medical and Biosensing De-vices, Eds. E.I. Alarcon, M. Griffith, and K.I. Udekwu, 2015, Springer International Publish-ing: Cham. P. 1-12.

Helmlinger J., Prymak O., Loza K., Gocyla M., Heggen M. and Epple M. On the crystallogra-phy of silver nanoparticles with different shapes. Cryst. Growth Des. 2016. Vol. 16, № 7. P. 3677-3687.

Albanese A., Tang P. S. and Chan W. C. W. The effect of nanoparticle size, shape, and sur-face chemistry on biological systems. Ann. Rev. Biomed. Engeneer. 2012. Vol. 14, № 1. P. 1-16.

Xia Y., Xiong Y., Lim B. and Skrabalak S. E. Shape-controlled synthesis of metal nanocrys-tals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009. Vol. 48, № 1. P. 60-103.

Xia Y., Gilroy K. D., Peng H.-C. and Xia X. Seed-mediated growth of colloidal metal nanocrystals. Angew. Chem. Int. Ed. 2017. Vol. 56, № 1. P. 60-95.

Kovalenko M. V., Manna L., Cabot A., Hens Z., Talapin D. V., Kagan C. R., Klimov V. I., Rogach A. L., Reiss P., Milliron D. J., Guyot-Sionnnest P., Konstantatos G., Parak W. J., Hyeon T., Korgel B. A., Murray C. B., and Heiss W. Prospects of nanoscience with nanocrys-tals. ACS Nano 2015. Vol. 9, № 2. P. 1012-1057.

Lucky S. S., Soo K. C. and Zhang Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015. Vol. 115, № 4. P. 1990-2042.

Matteini P., Cottat M., Tavanti F., Panfilova E., Scuderi M., Nicotra G., Menziani M. C., Khlebtsov N., de Angelis M. and Pini R. Site-selective surface-enhanced Raman detection of proteins. ACS Nano 2017. Vol. 11, № 1. P. 918-926.

da Silva A. G. M., Rodrigues T. S., Wang J., Yamada L. K., Alves T. V., Ornellas F. R., Ando R. A. and Camargo P. H. C. The fault in their shapes: Investigating the surface-plasmon-resonance-mediated catalytic activities of silver quasi-spheres, cubes, triangular prisms, and wires. Langmuir 2015. Vol. 31, № 37. P. 10272-10278.

Tomalia D. A. and Khanna S. N. A systematic framework and nanoperiodic concept for unify-ing nanoscience: Hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive Mendeleev-like nanoperiodic tables. Chem. Rev. 2016. Vol. 116, № 4. P. 2705-2774.

Jiang K. and Pinchuk A. O., Noble metal nanomaterials: Synthetic routes, fundamental prop-erties, and promising applications, Solid State Physics, E.C. Robert and L.S. Robert, Editors. 2015, Academic Press. P. 131-211.

Tian P. Molecular dynamics simulations of nanoparticles. Ann Rep Sect C: Phys. Chem. 2008. Vol. 104, P. 142-164.

Konuk M. and Durukanoglu S. Shape-controlled growth of metal nanoparticles: An atomistic view. Phys. Chem. Chem. Phys. 2016. Vol. 18, № 3. P. 1876-1885.

Fichthorn K. A., Balankura T. and Qi X. Multi-scale theory and simulation of shape-selective nanocrystal growth. CrystEngComm 2016. Vol. 18, № 29. P. 5410-5417.

Fichthorn K. A. Atomic-scale theory and simulations for colloidal metal nanocrystal growth. J. Chem. Eng. Data 2014. Vol. 59, № 10. P. 3113-3119.

Martin L., Bilek M. M., Weiss A. S. and Kuyucak S. Force fields for simulating the interac-tion of surfaces with biological molecules. Interface Focus 2016. Vol. 6, № 1. P. 20150045.

Kyrychenko A., Karpushina G. V., Bogatyrenko S. I., Kryshtal A. P. and Doroshenko A. O. Preparation, structure, and a coarse-grained molecular dynamics model for dodecanethiol-stabilized gold nanoparticles. Comput. Theor. Chem. 2011. Vol. 977, № 1–3. P. 34-39.

Kyrychenko A., Karpushina G. V., Svechkarev D., Kolodezny D., Bogatyrenko S. I., Kryshtal A. P. and Doroshenko A. O. Fluorescence probing of thiol-functionalized gold nanoparticles: Is alkylthiol coating of a nanoparticle as hydrophobic as expected? J. Phys. Chem. C 2012. Vol. 116, № 39. P. 21059-21068.

Henz B. J., Chung P. W., Andzelm J. W., Chantawansri T. L., Lenhart J. L. and Beyer F. L. Determination of binding energy and solubility parameters for functionalized gold nanoparti-cles by molecular dynamics simulation. Langmuir 2011. Vol. 27, № 12. P. 7836-7842.

Kyrychenko A., Korsun O. M., Gubin I. I., Kovalenko S. M. and Kalugin O. N. Atomistic simulations of coating of silver nanoparticles with poly(vinylpyrrolidone) oligomers: Effect of oligomer chain length. J. Phys. Chem. C 2015. Vol. 119, № 14. P. 7888-7899.

Milano G., Santangelo G., Ragone F., Cavallo L. and Di Matteo A. Gold nanoparticle/polymer interfaces: All atom structures from molecular dynamics simulations. J. Phys. Chem. C 2011. Vol. 115, № 31. P. 15154-15163. 24. Shen Z., Nieh M.-P. and Li Y. Decorating nanoparticle surface for targeted drug delivery: Opportunities and challenges. Polymers 2016. Vol. 8, № 3. P. 83.

Hwang J., Shim Y., Yoon S.-M., Lee S. H. and Park S.-H. Influence of polyvinylpyrrolidone (PVP) capping layer on silver nanowire networks: Theoretical and experimental studies. RSC Adv. 2016. Vol. 6, № 37. P. 30972-30977.

Balankura T., Qi X., Zhou Y. and Fichthorn K. A. Predicting kinetic nanocrystal shapes through multi-scale theory and simulation: Polyvinylpyrrolidone-mediated growth of Ag nanocrystals. J. Chem. Phys. 2016. Vol. 145, № 14. P. 144106.

Gracia-Pinilla M. Á., Pérez-Tijerina E., García J. A., Fernández-Navarro C., Tlahuice-Flores A., Mejía-Rosales S., Montejano-Carrizales J. M. and José-Yacamán M. On the structure and properties of silver nanoparticles. J. Phys. Chem. C 2008. Vol. 112, № 35. P. 13492-13498.

Mariscal M. M., Velazquez-Salazar J. J. and Yacaman M. J. Growth mechanism of nanoparti-cles: Theoretical calculations and experimental results. CrystEngComm 2012. Vol. 14, № 2. P. 544-549.

Kyrychenko A., Pasko D. A. and Kalugin O. N. Poly(vinyl alcohol) as a water protecting agent for silver nanoparticles: The role of polymer size and structure. Phys. Chem. Chem. Phys. 2017. Vol. 19, № 13. P. 8742-8756.

Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A. and Haak J. R. Molecu-lar dynamics with coupling to an external bath. J. Chem. Phys. 1984. Vol. 81, № 8. P. 3684-3690.

Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E. and Berendsen H. J. C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005. Vol. 26, № 16. P. 1701-1718.

Humphrey W., Dalke A. and Schulten K. VMD: Visual molecular dynamics. J. Mol. Graphics 1996. Vol. 14, № 1. P. 33-38.

Gromacs user manual version 4.5.4 / Van Der Spoel D., Lindahl E., Hess B., van Buuren A. R., Apol E., Meulenhoff P. J., Tieleman D. P., Sijbers A. L. T. M., Feenstra K. A., van Drunen R., and Berendsen H. J. C. www.gromacs.org, 2010. P. 372.

Akbarzadeh H., Abbaspour M. and Mehrjouei E. Competition between stability of icosahedral and cuboctahedral morphologies in bimetallic nanoalloys. Phys. Chem. Chem. Phys. 2017. Vol. 19, № 22. P. 14659-14670.

Myshlyavtsev A. V., Stishenko P. V. and Svalova A. I. A systematic computational study of the structure crossover and coordination number distribution of metallic nanoparticles. Phys. Chem. Chem. Phys. 2017. Vol. 19, № 27. P. 17895-17903.

Ali S., Myasnichenko V. S. and Neyts E. C. Size-dependent strain and surface energies of gold nanoclusters. Phys. Chem. Chem. Phys. 2016. Vol. 18, № 2. P. 792-800.

Li Z. Y., Young N. P., Di Vece M., Palomba S., Palmer R. E., Bleloch A. L., Curley B. C., Johnston R. L., Jiang J. and Yuan J. Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 2008. Vol. 451, № 7174. P. 46-48.

Цитування

Binding Preference of α-Cyclodextrin onto Gold Nanoparticles
(2019) Nanosistemi, Nanomateriali, Nanotehnologii
Crossref

Опубліковано
2017-12-27
Цитовано
Як цитувати
Blazhynska, M. M., Kyrychenko, A. V., & Kalugin, O. N. (2017). Молекулярно-динамічне моделювання наночастинок срібла кубічної та біпірамідальної форми. Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Хімія», (29), 22-30. https://doi.org/10.26565/2220-637X-2017-29-02