Microstructure and transport properties of lithium hexafluorophosphate solutions in binary mixture of dimethyl carbonate with ethylene carbonate from molecular dynamics simulation
Abstract
Solutions of Li+ salts in many non-aqueous solvents used in Li-ion batteries have a maximum conductivity curve depending on the electrolyte concentration. For the microscopic interpretation of this phenomenon for one of the most popular electrolytes, LiPF6 solutions in a binary mixture of dimethyl carbonate (DMC) / ethylene carbonate (EC) (1:1), molecular dynamics simulations of the corresponding systems with a salt content of 0.1, 0.5, 1.0, 1.5 and 2.0 M were performed. The potential models for DMC and EC molecules were developed as the combination of two different force fields: OPLS-AA and GAFF in order to properly reproduce the diffusion coefficients of pure solvents. The structure has been analyzed in terms of radial distribution functions (RDFs) and running co-ordination numbers (RCNs). The results show that Li+ cation can form contact ion pairs (CIPs) and solvent shared ion pairs (SSIPs) in the solutions. The total coordination number of the cation remains the same at around 5.5-6.0 for all concentrations. Also, EC molecules and PF6- anions are competing for the position in the first coordination shell of the cation. The aggregate analysis with two different distance criteria was performed: minima on the RDFs and the minima on the second derivative of the RCNs. The diffusion coefficients for all components of the solutions and viscosity of simulated systems were also obtained. The diffusion coefficients for all components are decreasing and viscosity values are non-linearly increasing with the salt concentration increase. The conductivity values were obtained with the diffusion coefficient values of ions via Nernst-Einstein relation. These findings and the drastic viscosity increase at 1.0 M and at higher concentrations of LiPF6 are in agreement with the calculated experimental conductivity values.
Downloads
References
Wang Y., Liu B., Li Q., Cartmell S., Ferrara S., Deng Z. D., Xiao J. Lithium and lithium ion batteries for applications in microelectronic devices: A review. J. Power Sources 2015, 286 330-345. https://doi.org/10.1016/j.jpowsour.2015.03.164
Liu J., Liu Pacifi J. Addressing the grand challenges in energy storage. Adv. Funct. Mater. 2013, 23 (8), 924-928. https://doi.org/10.1002/adfm.201203058
Liang Y., Zhao C. Z., Yuan H., Chen Y., Zhang W., Huang J. Q., Yu D., Liu Y., Titirici M. M., Chueh Y. L., et al. A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1 (1), 6-32. https://doi.org/10.1002/inf2.12000
Chapter 2 - characteristics of batteries for portable devices. In Batteries for portable devices, Pistoia, G., Ed. Elsevier Science B.V.: Amsterdam, 2005; pp 17-27. https://doi.org/10.1016/B978-044451672-5/50002-8
Pistoia G. Applications – portable | portable devices: Batteries. In Encyclopedia of electrochemical power sources, Garche, J., Ed. Elsevier: Amsterdam, 2009; pp 29-38. https://doi.org/10.1016/B978-044452745-5.00358-0
Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104 (10), 4303-417. https://doi.org/10.1021/cr030203g
Julien C., Mauger A., Vijh A., Zaghib K. Lithium batteries: Science and technology. Springer Cham: 2016; p 619. https://doi.org/10.1007/978-3-319-19108-9
Whittingham M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104 (10), 4271-301. https://doi.org/10.1021/cr020731c
Ye X., Wu J., Liang J., Sun Y., Ren X., Ouyang X., Wu D., Li Y., Zhang L., Hu J., et al. Locally fluorinated electrolyte medium layer for high-performance anode-free li-metal batteries. ACS Appl. Mater. Interfaces 2022, 14 (48), 53788-53797. https://doi.org/10.1021/acsami.2c15452
Nam K. H., Jeong S., Yu B. C., Choi J. H., Jeon K. J., Park C. M. Li-compound anodes: A classification for high-performance li-ion battery anodes. ACS Nano 2022, 16 (9), 13704-13714. https://doi.org/10.1021/acsnano.2c05172
Wu F., Yushin G. Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energ. Environ. Sci. 2017, 10 (2), 435-459. https://doi.org/10.1039/C6EE02326F
Srivastava N., Singh S. K., Meghnani D., Mishra R., Tiwari R. K., Patel A., Tiwari A., Singh R. K. Molybdenum-doped li/mn-rich layered transition metal oxide cathode material li1.2mn0.6ni0.1co0.1o2with high specific capacity and improved cyclic stability for rechargeable li-batteries. ACS Appl. Energy Mater. 2022, 5 (10), 12183-12195. https://doi.org/10.1021/acsaem.2c01680
Rodrigues M. T. F., Babu G., Gullapalli H., Kalaga K., Sayed F. N., Kato K., Joyner J., Ajayan P. M. A materials perspective on li-ion batteries at extreme temperatures. Nat. Energy 2017, 2 (8), 1-14. https://doi.org/10.1038/nenergy.2017.108
Luo X., Jiang S., Yan X., Chen C., Liu S., Zhan S., Zhang L. Aminoalkyldisiloxane compound as efficient high-temperature electrolyte additive for limn2o4/graphite batteries. Ionics 2022, 29 (1), 87-96. https://doi.org/10.1007/s11581-022-04814-x
Lavi O., Luski S., Shpigel N., Menachem C., Pomerantz Z., Elias Y., Aurbach D. Electrolyte solutions for rechargeable li-ion batteries based on fluorinated solvents. ACS Appl. Energy Mater. 2020, 3 (8), 7485-7499. https://doi.org/10.1021/acsaem.0c00898
Kabra V., Birn B., Kamboj I., Augustyn V., Mukherjee P. P. Mesoscale machine learning analytics for electrode property estimation. J. Phys. Chem. C 2022, 126 (34), 14413-14429. https://doi.org/10.1021/acs.jpcc.2c04432
Hu M., Pang X., Zhou Z. Recent progress in high-voltage lithium ion batteries. J. Power Sources 2013, 237 229-242. https://doi.org/10.1016/j.jpowsour.2013.03.024
Choi N. S., Chen Z., Freunberger S. A., Ji X., Sun Y. K., Amine K., Yushin G., Nazar L. F., Cho J., Bruce P. G. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Edit. 2012, 51 (40), 9994-10024. https://doi.org/10.1002/anie.201201429
Chen X., Zhang X. Q., Li H. R., Zhang Q. Cation−solvent, cation−anion, and solvent−solvent interactions with electrolyte solvation in lithium batteries. Batteries & Supercaps 2019, 2 (2), 128-131. https://doi.org/10.1002/batt.201800118
Chen X., Yao N., Zeng B. S., Zhang Q. Ion–solvent chemistry in lithium battery electrolytes: From mono-solvent to multi-solvent complexes. Fundamental Research 2021, 1 (4), 393-398. https://doi.org/10.1016/j.fmre.2021.06.011
Su C. C., He M., Amine R., Rojas T., Cheng L., Ngo A. T., Amine K. Solvating power series of electrolyte solvents for lithium batteries. Energ. Environ. Sci. 2019, 12 (4), 1249-1254. https://doi.org/10.1039/C9EE00141G
Ding M. S., Xu K., Zhang S., Jow T. R. Liquid/solid phase diagrams of binary carbonates for lithium batteries part ii. J. Electrochem. Soc. 2001, 148 (4), A299-A299. https://doi.org/10.1149/1.1353568
Klassen B., Aroca R., Nazri M., Nazri G. A. Raman spectra and transport properties of lithium perchlorate in ethylene carbonate based binary solvent systems for lithium batteries. J. Phys. Chem. B 1998, 102 (24), 4795-4801. https://doi.org/10.1021/jp973099d
Wang Y., Balbuena P. B. Theoretical studies on cosolvation of li ion and solvent reductive decomposition in binary mixtures of aliphatic carbonates. Int. J. Quantum Chem. 2005, 102 (5), 724-733. https://doi.org/10.1002/qua.20466
Uchida S., Kiyobayashi T. What differentiates the transport properties of lithium electrolyte in ethylene carbonate mixed with diethylcarbonate from those mixed with dimethylcarbonate? J. Power Sources 2021, 511 230423-230423. https://doi.org/10.1016/j.jpowsour.2021.230423
Kimura K., Hayashi K., Kiuchi H., Morita M., Haruyama J., Otani M., Sakaebe H., Fujisaki F., Mori K., Yonemura M., et al. Structural variation in carbonate electrolytes by the addition of li salts studied by x‐ray total scattering. Phys. Status Solidi B Basic Res. 2020, 257 (11), 2000100-2000100. https://doi.org/10.1002/pssb.202000100
Schechter A., Aurbach D., Cohen H. X-ray photoelectron spectroscopy study of surface films formed on li electrodes freshly prepared in alkyl carbonate solutions. Langmuir 1999, 15 (9), 3334-3342. https://doi.org/10.1021/la981048h
Zhang W., Wang Y., Lan X., Huo Y. Imidazolium-based ionic liquids as electrolyte additives for high-voltage li-ion batteries. Rev. Chem. Intermed. 2020, 46 (6), 3007-3023. https://doi.org/10.1007/s11164-020-04128-5
Kameda Y., Umebayashi Y., Takeuchi M., Wahab M. A., Fukuda S., Ishiguro S.-i., Sasaki M., Amo Y., Usuki T. Solvation structure of li+ in concentrated lipf6 −propylene carbonate solutions. J. Phys. Chem. B 2007, 111 (22), 6104-6109. https://doi.org/10.1021/jp072597b
Berhaut C. L., Porion P., Timperman L., Schmidt G., Lemordant D., Anouti M. Litdi as electrolyte salt for li-ion batteries: Transport properties in ec/dmc. Electrochim. Acta 2015, 180 778-787. https://doi.org/10.1016/j.electacta.2015.08.165
Wu X., Gong Y., Xu S., Yan Z., Zhang X., Yang S. Electrical conductivity of lithium chloride, lithium bromide, and lithium iodide electrolytes in methanol, water, and their binary mixtures. J. Chem. Eng. Data 2019, 64 (10), 4319-4329. https://doi.org/10.1021/acs.jced.9b00405
Gottwald T., Sedlaříková M., Vondrák J. Conductivity of inorganic perchlorates dissolved in aprotic solvents. ECS Trans. 2017, 81 (1), 47-55. https://doi.org/10.1149/08101.0047ecst
Berhaut Christopher L., Lemordant D., Porion P., Timperman L., Schmidt G., Anouti M. Ionic association analysis of litdi, lifsi and lipf6 in ec/dmc for better li-ion battery performances. RSC Adv. 2019, 9 (8), 4599-4608. https://doi.org/10.1039/C8RA08430K
Khomenko V., Raymundo-Piñero E., Béguin F. High-energy density graphite/ac capacitor in organic electrolyte. J. Power Sources 2008, 177 (2), 643-651. https://doi.org/10.1016/j.jpowsour.2007.11.101
Marcus Y., Hefter G. Ion pairing. Chem. Rev. 2006, 106 (11), 4585-4621. https://doi.org/10.1021/cr040087x
Han S. A salient effect of density on the dynamics of nonaqueous electrolytes. Sci. Rep. 2017, 7 (1), 46718-46718. https://doi.org/10.1038/srep46718
Uchida S., Kiyobayashi T. How does the solvent composition influence the transport properties of electrolyte solutions? Lipf(6) and lifsa in ec and dmc binary solvent. Phys. Chem. Chem. Phys. 2021, 23 (18), 10875-10887. https://doi.org/10.1039/D1CP00967B
Abraham M. J., Murtola T., Schulz R., Páll S., Smith J. C., Hess B., Lindah E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1-2 19-25. https://doi.org/10.1016/j.softx.2015.06.001
Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126 (1), 014101. https://doi.org/10.1063/1.2408420
Berendsen H. J. C., Postma J. P. M., Van Gunsteren W. F., Dinola A., Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81 (8), 3684-3690. https://doi.org/10.1063/1.448118
Essmann U., Perera L., Berkowitz M. L., Darden T., Lee H., Pedersen L. G. A smooth particle mesh ewald method. J. Chem. Phys. 1995, 103 (19), 8577-8593. https://doi.org/10.1063/1.470117
Allen P., Tildesley D. J. Computer simulation of liquids. Clarendon Press: Oxford, 1987.
Jorgensen W. L., Maxwell D. S., Tirado-Rives J. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118 (45), 11225-11236. https://doi.org/10.1021/ja9621760
Canongia Lopes J. N., Deschamps J., Pádua A. A. H. Modeling ionic liquids using a systematic all-atom force field. J. Phys. Chem. B 2004, 108 (6), 2038-2047. https://doi.org/10.1021/jp0362133
Dodda L. S., Cabeza de Vaca I., Tirado-Rives J., Jorgensen W. L. Ligpargen web server: An automatic opls-aa parameter generator for organic ligands. Nucleic Acids Res. 2017, 45 (W1), W331-W336. https://doi.org/10.1093/nar/gkx312
Damm W., Frontera A., Tirado-Rives J., Jorgensen W. L. Opls all-atom force field for carbohydrates. J. Comput. Chem. 1997, 18 (16), 1955-1970. https://doi.org/10.1002/(SICI)1096-987X(199712)18:16<1955::AID-JCC1>3.0.CO;2-L
Allen M. P., Tildesley D. J. Computer simulation of liquids. Oxford University Press: 2017; Vol. 1. https://doi.org/10.1093/oso/9780198803195.001.0001
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., et al., Gaussian 16 rev. C.01. Gaussian, Inc., Wallingford CT: 2016.
Mulliken R. S. Electronic population analysis on lcao–mo molecular wave functions. I. J. Chem. Phys. 1955, 23 (10), 1833-1840. https://doi.org/10.1063/1.1740588
Breneman C. M., Wiberg K. B. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 1990, 11 (3), 361-373. https://doi.org/10.1002/jcc.540110311
Hayamizu K., Aihara Y., Arai S., Martinez C. G. Pulse-gradient spin-echo (1)h, (7)li, and (19)f nmr diffusion and ionic conductivity measurements of 14 organic electrolytes containing lin(so2cf3)2. J. Phys. Chem. B 1999, 103 (3), 519-24. https://doi.org/10.1021/jp9825664
Wang J., Wang W., Kollman P. A., Case D. A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006, 25 (2), 247-260. https://doi.org/10.1016/j.jmgm.2005.12.005
Wang J., Wolf R. M., Caldwell J. W., Kollman P. A., Case D. A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25 (9), 1157-1174. https://doi.org/10.1002/jcc.20035
Borodin O., Smith G. D. Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: Ethylene carbonate electrolytes doped with lipf6. J. Phys. Chem. B 2009, 113 (6), 1763-1776. https://doi.org/10.1021/jp809614h
Kozlova S. A., Emel'yanenko V. N., Georgieva M., Verevkin S. P., Chernyak Y., Schäffner B., Börner A. Vapour pressure and enthalpy of vaporization of aliphatic dialkyl carbonates. J. Chem. Thermodyn. 2008, 40 (7), 1136-1140. https://doi.org/10.1016/j.jct.2008.02.012
Verevkin S. P., Toktonov A. V., Chernyak Y., Schäffner B., Börner A. Vapour pressure and enthalpy of vaporization of cyclic alkylene carbonates. Fluid Phase Equilibr. 2008, 268 (1-2), 1-6. https://doi.org/10.1016/j.fluid.2008.03.013
Ganesh P., Jiang D.-e., Kent P. R. C. Accurate static and dynamic properties of liquid electrolytes for li-ion batteries from ab initio molecular dynamics. J. Phys. Chem. B 2011, 115 (12), 3085-3090. https://doi.org/10.1021/jp2003529
Yu J., Balbuena P. B., Budzien J., Leung K. Hybrid dft functional-based static and molecular dynamics studies of excess electron in liquid ethylene carbonate. J. Electrochem. Soc. 2011, 158 (4), A400-A400. https://doi.org/10.1149/1.3545977
Takeuchi M., Matubayasi N., Kameda Y., Minofar B., Ishiguro S.-i., Umebayashi Y. Free-energy and structural analysis of ion solvation and contact ion-pair formation of li+ with bf4– and pf6– in water and carbonate solvents. J. Phys. Chem. B 2012, 116 (22), 6476-6487. https://doi.org/10.1021/jp3011487
Dudariev D., Logacheva K., Kolesnik Y., Kalugin O. Interparticle interactions and dynamics in bmimbf4 and libf4 solutions in propylene carbonate: Md simulation. Kharkov Univ. Bull. Chem. Ser. 2019, (33), 54-64. https://doi.org/10.26565/2220-637X-2019-33-04
Humphrey W., Dalke A., Schulten K. Vmd: Visual molecular dynamics. J. Mol. Graph. 1996, 14 (1), 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
Gans P., Gill J. B., Longdon P. J. Spectrochemistry of solutions. Part 21.—inner- and outer-sphere complexes of lithium with thiocyanate in acetonitrile solutions. J. Chem. Soc., Faraday Trans. 1 1989, 85 (7), 1835-1839. https://doi.org/10.1039/F19898501835
Bachelin M., Gans P., Gill J. B. Spectrochemistry of solutions. Part 24.—li, na, k and bun4n thiocyanates in methanol: Infrared spectroscopic evidence for ion pairing and hydrogen bonding. J. Chem. Soc., Faraday Trans. 1992, 88 (22), 3327-3330. https://doi.org/10.1039/FT9928803327
Tenney C. M., Cygan R. T. Analysis of molecular clusters in simulations of lithium-ion battery electrolytes. J. Phys. Chem. C 2013, 117 (47), 24673-24684. https://doi.org/10.1021/jp4039122
Bernardes C. E. S., Minas da Piedade M. E., Canongia Lopes J. N. The structure of aqueous solutions of a hydrophilic ionic liquid: The full concentration range of 1-ethyl-3-methylimidazolium ethylsulfate and water. J. Phys. Chem. B 2011, 115 (9), 2067-2074. https://doi.org/10.1021/jp1113202
Hanke C. G., Lynden-Bell R. M. A simulation study of water−dialkylimidazolium ionic liquid mixtures. J. Phys. Chem. B 2003, 107 (39), 10873-10878. https://doi.org/10.1021/jp034221d
Marekha B. A., Kalugin O. N., Idrissi A. Non-covalent interactions in ionic liquid ion pairs and ion pair dimers: A quantum chemical calculation analysis. Phys. Chem. Chem. Phys. 2015, 17 (26), 16846-16857. https://doi.org/10.1039/C5CP02197A
Bernardes C. E. S. Aggregates: Finding structures in simulation results of solutions. J. Comput. Chem. 2017, 38 (10), 753-765. https://doi.org/10.1002/jcc.24735
France-Lanord A., Grossman J. C. Correlations from ion pairing and the nernst-einstein equation. Phys. Rev. Lett. 2019, 122 (13), 136001. https://doi.org/10.1103/PhysRevLett.122.136001
Hess B. Determining the shear viscosity of model liquids from molecular dynamics simulations. J. Chem. Phys. 2002, 116 (1), 209-209. https://doi.org/10.1063/1.1421362