Interparticle interactions and dynamics in BmimBF4 and LiBF4 solutions in propylene carbonate: MD simulation

Keywords: 1-butyl-3-methylimidazolium tetrafluoroborate, lithium tetrafluoroborate, propylene carbonate, molecular dynamics simulation, polarization effects, microstructure, microdynamics, solvation shell

Abstract

Ionic liquids have gained immense popularity in recent decades due to a combination of unique properties. Despite the widespread use of ionic liquids mixtures with aprotic dipolar solvents in electrochemistry, it remains relevant to predict their macroscopic, primarily transport, properties based on the microscopic picture of the entire set of interparticle interactions in such systems. The method of molecular dynamics simulation (MDS) is one of the most powerful tools for solving problems of this kind. However, one of the unsolved problems of the classical MDS of ion-molecular systems is the correct accounting of polarization effects. Recently it was proposed to use a variation of the effective ion charges in solutions to solve this task.

This paper presents the results of the MDS structural and dynamic properties of 1-butyl-3-methylimidazolium (BmimBF4) and lithium (LiBF4) tetrafluoroborates solutions in propylene carbonate (PC) at 298.15 K in NPT ensemble using GROMACS and MDNAES software packages.

The possibility of reproducing the experimental dynamic properties (diffusion coefficients of cations and solvent, viscosity, and electrical conductivity) of binary systems based on mixtures of ionic liquids with PC in a wide concentration range was shown. Polarization effects were taken into account by reducing the partial charges of the ion atoms.

The structure of the solvation shell of cations was studied within the framework of radial distribution functions, distribution of coordination numbers and the presence of hydrogen bonds between the organic cation and solvent molecules. The results point to stronger and more structured solvation shell of the Li+ cation compared to Bmim+, which is consistent with the conclusions about the mobility of these cations. The reorientation times of propylene carbonate molecules and their lifetimes in the framework of the first solvation shells of the cations are several times higher for the lithium cation.

Downloads

Download data is not yet available.

References

Hallett J.P., Welton T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Cataly-sis. Chem. Rev. 2011, 111, 3508-3576.

Torimoto T., Tsuda T., Okazaki K.I., Kuwabata S. New Frontiers in Materials Science Opened by Ionic Liquids. Adv. Mater. 2010, 22, 1196-1221.

Olivier-Bourbigou H., Magna L., Morvan D. Ionic liquids and catalysis: recent progress from knowledge to applications. Appl. Catal. A 2010, 373, 1-56.

MacFarlane D.R., Forsyth M., Howlett P.C., Pringle J.M., Sun J., Annat G., Neil W., Izgorodina E.I. Ionic Liquids in Electrochemical Devices and Processes: Managing Interfacial Electrochemistry. Acc. Chem. Res. 2007, 40, 1165-1173.

MacFarlane D.R., Tachikawa N., Forsyth M., Pringle J.M., Howlett P.C., Elliott G.D., Davis H.J., Watanabe M., Simon P., Angell C. Energy applications of ionic liquids. Energy Environ. Sci. 2014, 7, 232-250.

Nishida T., Tashiro Y., Yamamoto M. Physical and electrochemical properties of 1-alkyl-3-methylimidazolium tetrafluoroborate for electrolyte. J. Fluor. Chem. 2003, 120, 135-141.

Kalugin O.N., Voroshylova I.V., Riabchunova A.V., Lukinova E.V., Chaban V.V. Conducto-metric Study of Binary Systems Based on Ionic Liquids and Acetonitrile in a wide Concentra-tion Range. Electrochim. Acta 2013, 105, 188-199.

Marcus Y., Hefter G. Ion Pairing. Chem. Rev. 2006, 106, 4585-4621.

Dommert F., Schmidt J., Qiao B., Zhao Y., Klekeler C., Delle Site L., Berger R., Holm C. Comparative Study of Two Classical Force Fields on Statics and Dynamics of [EMIM][BF4] Investigated Via Molecular Dynamics Simulations. J. Chem. Phys. 2008, 129, 224501.

Gkagkasa K., Ponnuchamyb V., Dašićc M., Stankovićc I. Molecular dynamics investigation of a model ionic liquid lubricant for automotive applications. Tribol. Int. 2017, 113, 83-91.

Thomas M., Sancho Sanz I., Holloczki O., Kirchner B. Ab initio molecular dynamics simula-tions of ionic liquids. In NIC Symposium 2016, Julich, Germany, Feb 11-12, 2016; Binder K., Muller M., Kremer M., Schnurpfeil A., Eds.; Forschungszentrum Jülich GmbH, Zentralbiblio-thek, pp 117-124.

Yan T., Burnham C.J., Del Pópolo M.G., Voth G.A. Molecular Dynamics Simulation of Ionic Liquids: The Effect of Electronic Polarizability. J. Phys. Chem. B 2004, 108 (32), 11877 11881.

Batista M.L.S., Coutinho J.A.P., Gomes J.R.B. Prediction of Ionic Liquids Properties through Molecular Dynamics Simulations Curr. Phys. Chem. 2014, 4 (2), 151-172.

Fatemi S.M., Foroutan M. Recent findings about ionic liquids mixtures obtained by molecu-lar dynamics simulation J. Nanostructure Chem. 2015, 5 (3), 243-253.

Docampo-Álvarez B., Gómez-González V., Montes-Campos H., Otero-Mato J.M., Méndez-Morales T., Cabeza O., Gallego L.J., Lynden-Bell R.M., Ivaništšev V.B., Fedorov, M.V., Varela L.M. Molecular dynamics simulation of the behaviour of water in nano-confined ionic liquid–water mixtures. J. Phys.: Condens. Matter 2016, 28, 464001.

Dasari S., Mallik B.S. Biosolvation Nature of Ionic Liquids: Molecular Dynamics Simulation of Methylated Nucleobases in Hydrated 1-Ethyl-3-methylimidazolium Acetate. ACS Omega 2018, 3 (7), 8344-8354.

Pratik D., Jindal K.S. Recent advances in molecular simulations of ionic liquid–ionic liquid mixtures. COGSC 2019, 18, 90-97.

Gómez-González V., Docampo-Álvarez B., Otero-Mato J.M., Cabeza O., Gallego L.J,, Varela L.M. Molecular dynamics simulations of the structure of mixtures of protic ionic liquids and monovalent and divalent salts at the electrochemical interface. Phys. Chem. Chem. Phys. 2018, 20, 12767 12776.

Bedrov D., Piquemal J.-P., Borodin O., MacKerell A.D., Roux B., Schröder C. Molecular Dy-namics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields. Chem. Rev. 2019, 119, 7940-7995.

Bhargava B.L., Balasubramanian S. Refined Potential Model for Atomistic Simulations of Ionic Liquid [Bmim][PF6]. J. Chem. Phys. 2007, 127, 114510.

Köddermann T., Paschek D., Ludwig R. Molecular Dynamic Simulations of Ionic Liquids: A Reliable Description of Structure, Thermodynamics and Dynamics. Chemphyschem 2007, 8, 2464-2470.

Cadena C., Zhao Q., Snurr R.Q., Maginn E.J. Molecular Modeling and Experimental Studies of the Thermodynamic and Transport Properties of Pyridinium-Based Ionic Liquids. J. Phys. Chem. B 2006, 110, 2821-2832.

Mondal A., Balasubramanian S.J. Quantitative prediction of physical properties of imida-zolium based room temperature ionic liquids through determination of condensed phase site charges: a refined force field. Phys. Chem. 2014, 118, 3409-3422.

Chernozhuk T.V., Kalugin O.N., Kolesnik Ya.V. Microstructure and dynamics of single charged ions in propylene carbonate. Kharkov Univ. Bull. Chem. Ser. 2013, 22 (45), 25-38.

Koverga V.A., Voroshylova I.V., Smortsova Y., Miannay F.A., Cordeiro N., Idrissi A., Kalugin O.N. Local structure and hydrogen bonding in liquid γ-butyrolactone and propylene carbonate: A molecular dynamics simulation. J. Mol. Liq. 2019, 287, 110912.

Abraham M.J., Murtola T., Schulz R., Pall S., Smith J.C., Hess B., Lindahl E. GROMACS: High Performance Molecular Simulations Through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1-2, 19-25.

Kalugin O.N., Kolesnik Ya.V. MDNAES: the program set for computer simulation of ion-molecular systems by using molecular dynamics method. Kharkov Univ. Bull. Chem. Ser. 1999, 4 (27), 58-79.

Koverga V., Kalugin O.N., Miannay F.A., Smortsova Y., Goloviznina K., Marekha B., Jedlovszky P., Idrissi A. The local structure in the BmimPF6/acetonitrile mixture: the charge distribution effect. Phys. Chem. Chem. Phys. 2018, 20, 21890-21902.

Brehm M., Kirchner B. TRAVIS - a free analyzer and visualizer for Monte Carlo and molecu-lar dynamics. J. Chem. Inf. Model. 2011, 51 (8), 2007-2023.

Hess B. Determining the shear viscosity of model liquids from molecular dynamics simula-tions. J. Chem. Phys. 2002, 116, 209-217.

Hansen J.P., McDonald I.R. Statistical mechanics of dense ionized matter. IV. Density and charge fluctuations in a simple molten salt. Phys. Rev. A 1975, 11, 2111-2123.

Ryabchunova A.V., Gavryukova E.O., Kirichenko A.A., Kalugin O.N. Electrical conductivity of solutions of imidazolium ionic liquids in propylene carbonate over a wide range of concen-trations. In Modern problems of electrochemistry: education, science, production: a collection of scientific works, Proceedings of the VII Ukrainian Congress of Electrochemistry, Kharkiv, Ukraine, Sep 21-25, 2015; Omelchuk A.O., Sahnenko M.D., Eds.; Kharkiv: NTU "KhPI", 2015, pp 155-156.

Varlamova T.M., Yurina E.S. Lithium perchlorate (tetrafluoroborate)-diethyl carbonate-propylene carbonate electrolyte systems. Russ. J. Phys. Chem. 2006, 80, 1265-1268.

Marekha B.A., Kalugin O.N., Bria M., Buchner R., Idrissi A. Translational Diffusion in Mix-tures of Imidazolium ILs with Polar Aprotic Molecular Solvents. J. Phys. Chem. B 2014, 118, 5509-5517.

Phuoc H.L., Tran A.T., Walczyk D.J., Miller A.M., Yu L. Conductivity, viscosity, and ther-modynamic properties of propylene carbonate solutions in ionic liquids. J Mol. Liq. 2017, 246, 215-220.

Richardson P.M., Voice A.M., Ward I.M. Pulsed-Field Gradient NMR Self Diffusion and Ionic Conductivity Measurements for Liquid Electrolytes Containing LiBF4 and Propylene Carbonate. Electrochim. Acta 2014, 130, 606-618.

Grabowski S.J. Weak to Strong Hydrogen Bonds. In Hydrogen Bonding - New Insights. Dordrecht: Springer, 2006; pp 149-192.

Published
2019-12-27
Cited
How to Cite
Dudariev, D. S., Logacheva, K. O., Kolesnik, Y. V., & Kalugin, O. N. (2019). Interparticle interactions and dynamics in BmimBF4 and LiBF4 solutions in propylene carbonate: MD simulation. Kharkiv University Bulletin. Chemical Series, (33), 54-64. https://doi.org/10.26565/2220-637X-2019-33-04