Force field of tetrafluoroborate anion for molecular dynamics simulation: a new approach

Keywords: tetrafluoroborate anion, vibrational spectrum, molecular dynamics simulation, diffusion coefficient

Abstract

Design of new electrical energy storage devices including supercapacitors as well as an optimization of existing ones require not only new electrolytes, but also the deep and complete understanding of the processes occurring in the electrolyte solutions. Spectral techniques and classical molecular dynamics simulation (MDS) have gained a reputation as a reliable tool for such tasks. The starting point of any MDS is a choice or development of the force fields for all simulated particles. The combination of vibrational spectroscopy and molecular dynamics technique can provide a thorough understanding of the structure and dynamics of the ionic subsystem. In this connection, the reproduction of the vibrational spectra should be added to the requirements for the force fields of the most common electrolyte components.

Many modern supercapacitors are based on organic electrolytes consisting of non-aqueous aprotic solvents such as acetonitrile, propylene carbonate and γ-butyrolactone and quaternary ammonium salts with tetrafluoroborate and hexafluorophosphate as anions.

The purpose of the current work is to develop a new force field for tetrafluoroborate anion (BF4-) able to reproduce not only translational diffusion in acetonitrile medium, but also the spectral properties of this ion in a condensed phase. Since found in the literature force fields of BF4-, cannot satisfy these requirements, there were performed intensive quantum chemical calculations of BF4- at the M06-2X/6-311++G(d,p) level of theory to construct the potential energy surface with respect to the B-F bonds and F-B-F angles followed by evaluating corresponding intramolecular potential constants. Combining the obtained bond and angle force constants with partial charges on B and F atoms calculated at the same level of theory, and literature values of Lennard-Jones parameters, a new force field model for BF4- anion was created. Based on the carried out MD simulations of the BF4- ion in an infinitely diluted acetonitrile solution, it was proved that the obtained resulting model is capable to reproduce both transport and intra-ion vibrational properties of the tetrafluoroborate anion.

Downloads

Download data is not yet available.

References

González A., Goikolea E., Barrena J. A., Mysyk R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58 1189-1206.

Zhong C., Deng Y., Hu W., Qiao J., Zhang L., Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 2015, 44 (21), 7484-7539.

Dahl K., Sando G., Fox D., Sutto T., Owrutsky J. Vibrational spectroscopy and dynamics of small anions in ionic liquid solutions. J. Chem. Phys. 2005, 123 084504.

Zhang B., Yuan Z., li X., Ren X., Nian H., Shen Y., Yun Q. Ion-molecule interaction in solutions of lithium tetrafluoroborate in propylene carbonate: An ftir vibrational spectroscopic study. In. J. Electrochem. Sc. 2013, 8 12735-12740.

Jow T. R., Xu K., Borodin O., Ue M. Electrolytes for lithium and lithium-ion batteries. Springer: New York, NY, 2014; Vol. 58, p 476.

Paschoal V. H., Faria L. F. O., Ribeiro M. C. C. Vibrational spectroscopy of ionic liquids. Chem. Rev. 2017, 117 (10), 7053-7112.

Ueno S., Tanimura Y., Ten-no S. Molecular dynamics simulation for infrared spectroscopy with intramolecular forces from electronic properties of on-the-fly quantum chemical calculations. Int. J. Quantum Chem. 2013, 113 (3), 330-335.

Xu R. J., Blasiak B., Cho M., Layfield J. P., Londergan C. H. A direct, quantitative connection between molecular dynamics simulations and vibrational probe line shapes. J. Phys. Chem. Lett. 2018, 9 (10), 2560-2567.

Choi E., Yethiraj A. Conformational properties of a polymer in an ionic liquid: Computer simulations and integral equation theory of a coarse-grained model. J. Phys. Chem. B 2015, 119 (29), 9091-9097.

Li B., Ma K., Wang Y.-L., Turesson M., Woodward C. E., Forsman J. Fused coarse-grained model of aromatic ionic liquids and their behaviour at electrodes. Phys. Chem. Chem. Phys. 2016, 18 (11), 8165-8173.

Mehta N. A., Levin D. A. Molecular dynamics electrospray simulations of coarse-grained ethylammonium nitrate (ean) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4). Aerospace 2018, 5 (1).

Son C. Y., McDaniel J. G., Schmidt J. R., Cui Q., Yethiraj A. First-principles united atom force field for the ionic liquid Bmim+BF4–: An alternative to charge scaling. J. Phys. Chem. B 2016, 120 (14), 3560-3568.

Tetiana C., Oleg K., Yaroslav K. Microstructure and dynamics of single charged ions in propylene carbonate. Kharkov Univ. Bull. Chem. Ser. 2013, 0 (22), 25-38.

Vovchynskyi I. S., Kolesnik Y. V., Filatov Y. I., Kalugin O. N. Molecular modelling on solutions of 1-1′-spirobipirrolidinium tetrafluoroborate in acetonitrile. J. Mol. Liq. 2017, 235 60-67.

Sambasivarao S. V., Acevedo O. Development of opls-aa force field parameters for 68 unique ionic liquids. J. Chem. Theory Comput. 2009, 5 (4), 1038-1050.

Doherty B., Zhong X., Gathiaka S., Li B., Acevedo O. Revisiting OPLS force field parameters for ionic liquid simulations. J. Chem. Theory Comput. 2017, 13 (12), 6131 6145.

Feng G., Huang J., Sumpter B. G., Meunier V., Qiao R. Structure and dynamics of electrical double layers in organic electrolytes. Phys. Chem. Chem. Phys. 2010, 12 (20), 5468-5479.

Kanzaki R., Mitsugi T., Fukuda S., Fujii K., Takeuchi M., Soejima Y., Takamuku T., Yamaguchi T., Umebayashi Y., Ishiguro S.-i. Ion–ion interaction in room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate studied by large angle x-ray scattering experiment and molecular dynamics simulations. J. Mol. Liq. 2009, 147 (1), 77-82.

Shim Y., Kim H. J. Nanoporous carbon supercapacitors in an ionic liquid: A computer simulation study. ACS Nano 2010, 4 (4), 2345-2355.

Shim Y., Jung Y., Kim H. J. Graphene-based supercapacitors: A computer simulation study. J. Phys. Chem. B 2011, 115 (47), 23574-23583.

Yang P.-Y., Ju S.-P., Hsieh H.-S., Lin J.-S. The diffusion behavior and capacitance of tetraethylammonium/tetrafluoroborate ions in acetonitrile with different molar concentrations: A molecular dynamics study. RSC Adv. 2017, 7 (87), 55044-55050.

Zhang Q.-Y., Xie P., Wang X., Yu X.-W., Shi Z.-Q., Zhao S.-H. Thermodynamic and transport properties of spiro-(1,1')-bipyrrolidinium tetrafluoroborate and acetonitrile mixtures: A molecular dynamics study. Chin. Phys. B 2016, 25 (6), 066102.

Liu Z., Huang S., Wang W. A refined force field for molecular simulation of imidazolium-based ionic liquids. J. Phys. Chem. B 2004, 108 (34), 12978-12989.

Wu X., Liu Z., Huang S., Wang W. Molecular dynamics simulation of room-temperature ionic liquid mixture of [Bmim][BF4] and acetonitrile by a refined force field. Phys. Chem. Chem. Phys. 2005, 7 (14), 2771-2779.

de Andrade J., Böes E. S., Stassen H. Computational study of room temperature molten salts composed by 1-alkyl-3-methylimidazolium cationsforce-field proposal and validation. J. Phys. Chem. B 2002, 106 (51), 13344-13351.

Canongia Lopes J. N., Pádua A. A. H. Molecular force field for ionic liquids iii: Imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions. J. Phys. Chem. B 2006, 110 (39), 19586-19592.

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams, Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr. J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J. Gaussian 16 rev. C.01, Wallingford, CT, 2016.

Breneman C. M., Wiberg K. B. Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 1990, 11 (3), 361-373.

Cornell W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117 (19), 5179-5197.

Mayo S. L., Olafson B. D., Goddard W. A. Dreiding: A generic force field for molecular simulations. J. Phys. Chem. 1990, 94 (26), 8897-8909.

Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Su S., Windus T. L., Dupuis M., Montgomery Jr J. A. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14 (11), 1347-1363.

Xue H., Twamley B., Shreeve J. n. M. The first 1-alkyl-3-perfluoroalkyl-4,5- dimethyl-1,2,4-triazolium salts. J. Org. Chem. 2004, 69 (4), 1397-1400.

Jorgensen W. L., Maxwell D. S., Tirado-Rives J. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118 (45), 11225-11236.

Pádua A. A. H., Costa Gomes M. F., Canongia Lopes J. N. A. Molecular solutes in ionic liquids: A structural perspective. Acc. Chem. Res. 2007, 40 (11), 1087-1096.

Pensado A. S., Gomes M. F. C., Lopes J. N. C., Malfreyt P., Pádua A. A. H. Effect of alkyl chain length and hydroxyl group functionalization on the surface properties of imidazolium ionic liquids. Phys. Chem. Chem. Phys. 2011, 13 (30), 13518-13526.

Shimizu K., Pensado A., Malfreyt P., Pádua A. A. H., Canongia Lopes J. N. 2d or not 2d: Structural and charge ordering at the solid-liquid interface of the 1 (2 hydroxyethyl)-3-methylimidazolium tetrafluoroborate ionic liquid. Faraday Discuss. 2012, 154 (0), 155-169.

Canongia Lopes J. N., Deschamps J., Pádua A. A. H. Modeling ionic liquids using a systematic all-atom force field. J. Phys. Chem. B 2004, 108 (6), 2038-2047.

Canongia Lopes J. N., Pádua A. A. H. Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. J. Phys. Chem. B 2004, 108 (43), 16893 16898.

Shimizu K., Almantariotis D., Gomes M. F. C., Pádua A. A. H., Canongia Lopes J. N. Molecular force field for ionic liquids v: Hydroxyethylimidazolium, dimethoxy-2- methylimidazolium, and fluoroalkylimidazolium cations and bis(fluorosulfonyl)amide, perfluoroalkanesulfonylamide, and fluoroalkylfluorophosphate anions. J. Phys. Chem. B 2010, 114 (10), 3592-3600.

Smith W., Yong C. W., Rodger P. M. DL_POLY: Application to molecular simulation. Mol. Simulat. 2002, 28 (5), 385-471.

Lindahl E., Hess B., van der Spoel D. Gromacs 3.0: A package for molecular simulation and trajectory analysis. J. Mol. Model. 2001, 7 (8), 306-317.

Pronk S., Páll S., Schulz R., Larsson P., Bjelkmar P., Apostolov R., Shirts M. R., Smith J. C., Kasson P. M., van der Spoel D., Hess B., Lindahl E. Gromacs 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29 (7), 845-854.

Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26 (16), 1701-1718.

Bussi G., Donadio D., Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126 (1), 014101.

Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81 (8), 3684-3690.

Koverga V. A., Korsun O. M., Kalugin O. N., Marekha B. A., Idrissi A. A new potential model for acetonitrile: Insight into the local structure organization. J. Mol. Liq. 2017, 233 251-261.

Agieienko V. N., Kolesnik Y. V., Kalugin O. N. Structure, solvation, and dynamics of Mg2+, Ca2+, Sr2+, and Ba2+ complexes with 3-hydroxyflavone and perchlorate anion in acetonitrile medium: A molecular dynamics simulation study. J. Chem. Phys. 2014, 140 (19), 194501.

Kovacs H., Kowalewski J., Maliniak A., Stilbs P. Multinuclear relaxation and nmr self-diffusion study of the molecular dynamics in acetonitrile-chloroform liquid mixtures. J. Phys. Chem. 1989, 93 (2), 962-969.

Kunz W., Calmettes P., Bellissent-Funel M. C. Dynamics of liquid acetonitrile at high frequencies. J. Chem. Phys. 1993, 99 (3), 2079-2082.

Hurle R. L., Woolf L. A. Self-diffusion in liquid acetonitrile under pressure. J. Chem. Soc. Faraday Trans. 1982, 78 (7), 2233-2238.

Hawlicka E., Grabowski R. Solvation of ions in acetonitrile-methanol solutions of sodium iodide. Ber. Bunsenges. Phys. Chern. 1990, 94 (4), 486-489.

Holz M., Mao X. a., Seiferling D., Sacco A. Experimental study of dynamic isotope effects in molecular liquids: Detection of translationrotation coupling. J. Chem. Phys. 1996, 104 (2), 669-679.

Liang M., Zhang X.-X., Kaintz A., Ernsting N. P., Maroncelli M. Solvation dynamics in a prototypical ionic liquid + dipolar aprotic liquid mixture: 1-butyl-3-methylimidazolium tetrafluoroborate + acetonitrile. J. Phys. Chem. B 2014, 118 (5), 1340-1352.

Marcus Y. The properties of solvents. 1998.

Marekha B. A., Kalugin O. N., Bria M., Buchner R., Idrissi A. Translational diffusion in mixtures of imidazolium ils with polar aprotic molecular solvents. J. Phys. Chem. B 2014, 118 (20), 5509-5517.

Bešter-Rogač M., Stoppa A., Buchner R. Ion association of imidazolium ionic liquids in acetonitrile. J. Phys. Chem. B 2014, 118 (5), 1426-1435.

Published
2019-12-27
Cited
0 article
How to Cite
Vovchynskyi, I., & Kalugin, O. (2019). Force field of tetrafluoroborate anion for molecular dynamics simulation: a new approach. V. N. Karazin Kharkiv National University Bulletin. Chemical Series, (33), 37-53. https://doi.org/10.26565/2220-637X-2019-33-03

Most read articles by the same author(s)

1 2 > >>