C=O group versus C=C(CN)2 moiety from the viewpoint of electronic absorption and fluorescence spectroscopy

Keywords: chalcone, carbonyl group, methylidenepropanedinitrile, electronic absorption spectra, fluorescence spectra, solvatochromism, intersystem crossing

Abstract

The effect of changing carbonyl group to methylidenepropanedinitrile moiety onto electronic absorption and fluorescence spectra was analyzed theoretically within DFT / TD-DFT scheme. Chalcone (1,3-diphenylpropeneone) was chosen as a model molecular system of this investigation. Methylidenepropanedinitrile moiety was characterized as more suitable for obtaining bright fluorescent products, however, its electron accepting ability was lower compared to carbonyl group, contrary to widespread insights.

Downloads

Download data is not yet available.

References

Wang Q., Yan X.-T., Fan J.-W., Xu S.-H., Yao H., Yan C.-G. Design of a serum albumin sensitive probe for cell imaging and drug delivery by modifying a fluorescent agent. Journ. Molec. Struict. 2024, 1297 136973. doi: 10.1016/j.molstruc.2023.136973

Gogoulis A. T., Hojo R., Bergmann K., Hudson Z. M. Red-shifted emission in multiple resonance thermally activated delayed fluorescent materials through malononitrile incorporation. Org. Lett. 2023, 25 (43), 7791-7795. doi: 10.1021/acs.orglett.3c02858

Seferoğlu N., Bayrak Y., Yalçın E., Seferoğlu Z. Synthesis and investigation of various properties of a novel series of nonlinear optical (NLO) chromophores bearing dicyanovinyl (DCV) moiety. Journ. Mol. Struct. 2017, 1149 510-519. doi: 10.1016/j.molstruc.2017.07.102

Silvestri F., Jordan M., Howes K., Kivala M., Rivera-Fuentes P., Boudon C., Gisselbrecht J.-P., Schweizer W. B., Seiler P., Chiu M., Diederich F. Regular acyclic and macrocyclic [AB] oligomers by formation of push–pull chromophores in the chain-growth step. Chem. - A Europ. Journ. 2011, 17 (22), 6088-6097. doi: 10.1002/chem.201003672

Jarowski P. D., Wu Y.-L., Boudon C., Gisselbrecht J.-P., Gross M., Schweizer W. B., Diederich F. New donor–acceptor chromophores by formal [2+2] cycloaddition of donor-substituted alkynes to dicyanovinyl derivatives. Org. Biomolec. Chem. 2009, 7 (7), 1312-1322. doi: 10.1039/B821230A

Zhang X., Zhang X., Shi W., Meng X., Lee C., Lee S. Single-crystal organic microtubes with a rectangular cross section. Angew. Chem. Int. Ed. 2007, 46 (9), 1525-1528. doi: 10.1002/anie.200604359

Li E., Huang Y. Phosphine-catalyzed domino reaction: A novel sequential [2+3] and [3+2] annulation reaction of γ-substituent allenoates to construct bicyclic[3, 3, 0]octene derivatives. Chem. Commun. 2014, 50 (8), 948-950. doi: 10.1039/C3CC47716A

Wang P., Wu S. A study on the spectroscopy and photophysical behaviour of chalcone derivatives. Journ. Photochem. Photobiol. A: Chem. 1994, 77 (2), 127-131. doi: 10.1016/1010-6030(94)80035-9

Katzenellenbogen E. R., Branch G. E. K. The spectra of the p-dimethylaminochalcones and of their ions. Journ. Amer. Chem. Soc. 1947, 69 (7), 1615-1619. doi: 10.1021/ja01199a013

Szmant H. H., Basso A. J. The absorption spectra of substituted chalcones. Journ. Amer. Chem. Soc. 1952, 74 (17), 4397-4400. doi: 10.1021/ja01137a047

Fayed T. A., Awad M. K. Dual emission of chalcone-analogue dyes emitting in the red region. Chem. Phys. 2004, 303 (3), 317-326. 10.1016/j.chemphys.2004.06.023

Xu Z., Bai G., Dong C. Spectral and photophysical properties of intramolecular charge transfer fluorescence probe: 4′-dimethylamino-2,5-dihydroxychalcone. Spectrochim. Acta A 2005, 62 (4), 987-990. doi: 10.1016/j.saa.2005.04.019

Fayed T. A. A novel chalcone-analogue as an optical sensor based on ground and excited states intramolecular charge transfer: A combined experimental and theoretical study. Chem. Phys. 2006, 324 (2), 631-638. doi: 10.1016/j.chemphys.2005.11.039

Becke A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98 (7), 5648-5652. doi: 10.1063/1.464913

Woon D. E., Dunning T. H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98 (2), 1358-1371. doi: 10.1063/1.464303

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomer J., J.A. , Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, Revision B.01, Gaussian, Inc.: Wallingford CT, 2010.

Bylaska E. J., de Jong W. A., Govind N., Kowalski K., Straatsma T. P., Valiev M., Wang D., Apra E., Windus T. L., Hammond J., Nichols P., Hirata S., Hackler M. T., Zhao Y., Fan P.-D., Harrison R. J., Dupuis M., Smith D. M. A., Nieplocha J., Tipparaju V., Krishnan M., Wu Q., Van Voorhis T., Auer A. A., Nooijen M., Brown E., Cisneros G., Fann G. I., Fruchtl H., Garza J., Hirao K., Kendall R., Nichols J. A., Tsemekhman K., Wolinski K., Anchell J., Bernholdt D., Borowski P., Clark T., Clerc D., Dachsel H., Deegan M., Dyall K., Elwood D., Glendening E., Gutowski M., Hess A., Jaffe, Johnson B., Ju J., Kobayashi R., Kutteh R., Lin Z., Littlefield R., Long X., Meng B., Nakajima T., Niu S., Pollack L., Rosing M., Sandrone G., Stave M., Taylor H., Thomas G., van Lenthe J., Wong A., Zhang Z. Nwchem, A Computational Chemistry Package for Parallel Computers, version 5.1, Pacific Northwest National Laboratory, Richland, Washington, 99352-0999, USA: 2007.

Luzanov A. V., Zhikol O. A. Electron invariants and excited state structural analysis for electronic transitions within CIS, RRA, and TDDFT models. Int. J. Quant. Chem. 2009, 110 (4), 902-924. doi: 10.1002/qua.22041

Luzanov A. V., Zhikol O. A. Excited state structural analysis: TDDFT and related models. In Practical Aspects of Computational Chemistry I, Leszczynski, J.; Shukla, M. K., Eds. Springer: Dordrecht, 2011. doi: 10.1007/978-94-007-0919-5_14

Luzanov A. V. The structure of the electronic excitation of molecules in quantum-chemical models. Russ. Chem. Rev. 1980, 49 (11), 1033-1048. doi: 10.1070/RC1980v049n11ABEH002525

Neese F. The ORCA program system. WIREs Comp. Molec. Sci. 2012, 2 (1), 73-78. doi: 10.1002/wcms.81

Neese F. Software update: The ORCA program system, version 4.0. WIREs Comp. Molec. Sci. 2018, 8 (1), e1327. doi: 10.1002/wcms.1327

Neese F., Wennmohs F., Becker U., Riplinger C. The ORCA quantum chemistry program package. Journ. Chem. Phys. 2020, 152 (22). doi: 10.1063/5.0004608

de Souza B., Farias G., Neese F., Izsák R. Predicting phosphorescence rates of light organic molecules using time-dependent density functional theory and the path integral approach to dynamics. J. Chemi. Theor. Comp. 2019, 15 (3), 1896-1904. doi: 10.1021/acs.jctc.8b00841

Kang T.-R., Chen L.-M. (e)-2-(1,3-diphenylallylidene)malononitrile. Acta Cryst. E 2009, 65 (12), o3164. doi: 10.1107/S1600536809048338

Bureš F. Fundamental aspects of property tuning in push–pull molecules. RSC Adv. 2014, 4 (102), 58826-58851. doi: 10.1039/C4RA11264D

Luzanov A. V., Pedash V. F. Interpretation of excited states using charge-transfer numbers. Theor. Exper. Chem. 1980, 15 (4), 338-341. doi: 10.1007/BF00520694

Sukhorukov A. A., Zadorozhnyi B. A., Lavrushin V. F. The nature of the bands in the electronic absorption spectrum of trans-chalcone. Theor. Exper. Chem. 1973, 6 (5), 490-494. doi: 10.1007/BF00530061

Mitina V. G., Doroshenko A. O., Sukhorukov A. A., Lavrushin V. F. Interpretation of the electronic absorption spectra of anthracene analogs of chalcone. Theor. Exper. Chem. 1984, 20 (2), 141-146. doi: 10.1007/BF00592798

Black W. B., Lutz R. E. Ultraviolet absorption spectra of chalcones. Identification of chromophores1. Journ. Amer. Chem. Soc. 1955, 77 (19), 5134-5140. doi: 10.1021/ja01624a055

Woodward R. B. Structure and the absorption spectra of α,β-unsaturated ketones. Journ. Amer. Chem. Soc. 1941, 63 (4), 1123-1126. doi: 10.1021/ja01849a066

Fieser L. F., Fieser M., Rajagopalan S. Absorption spectroscopy and the structures of the diosterols. Journ. Org. Chem. 1948, 13 (6), 800-806. doi: 10.1021/jo01164a003

El-Sayed M. A. Spin-orbit coupling and the radiationless processes in nitrogen heterocyclics. J. Chem. Phys. 1963, 38 (12), 2834-2838. doi: 10.1063/1.1733610

Lower S. K., El-Sayed M. A. The triplet state and molecular electronic processes in organic molecules. Chem. Rev. 1966, 66 (2), 199-241. doi: 10.1021/cr60240a004

Robinson G. W., Frosch R. P. Theory of electronic energy relaxation in the solid phase. Journ. Chem. Phys. 1962, 37 (9), 1962-1973. doi: 10.1063/1.1733413

Robinson G. W., Frosch R. P. Electronic excitation transfer and relaxation. J. Chem. Phys. 1963, 38 (5), 1187-1205. doi: 10.1063/1.1733823

Published
2024-06-21
Cited
How to Cite
Doroshenko, A. (2024). C=O group versus C=C(CN)2 moiety from the viewpoint of electronic absorption and fluorescence spectroscopy. Kharkiv University Bulletin. Chemical Series, (42), 15-22. https://doi.org/10.26565/2220-637X-2024-42-02