Fluorescence of 4- and 5-nitro isocarbostyryl derivatives revisited

Keywords: isoquinoline-2H-1-one, isocarbostyril, nitro group, UV-vis absorption and fluorescence spectra, radiationless decay, intersystem crossing, ESSA approach

Abstract

Spectral properties of several selected nitro substituted isocarbostyrils (I, isoquinoline-2H-1-ones) were discovered in our research group several decades ago. These relatively small molecules demonstrated unusual spectral behavior: they were highly solvatochromic and 5-nitro-I appeared fluorescent in solvents of intermediate-to-high polarity. UV-vis spectra of the title compounds were studied previously both experimentally and theoretically, however, on the quite low level of quantum theory (π-electronic approximation). The aim of the current communication is to reconsider them on DFT/TDDFT level with the account of the nπ* states localized on NO2-group spin-orbit coupling analyses and radiationless intersystem crossing (ISC) process, which regulates the fluorescent properties of nitro-substituted aromatic compounds.

Received 27.09.2022

Accepted 29.11.2022

Downloads

Download data is not yet available.

References

Fernau A. Über isocarbostyril. Monatsh. Chem. 1893, 14 (1), 59-70. https://doi.org/10.1007/BF01517857

Wibaut J. P., Haaijman P. W. On a remarkable formation of isocarbostyril from isoquinoline. Rec. Trav. Chim. 1943, 62 (7), 466-468. https://doi.org/10.1002/recl.19430620710

Horning D. E., Lacasse G., Muchowski J. M. Isocarbostyrils. I. Electrophilic substitution reactions. Canad. Journ. Chem. 1971, 49 (17), 2785-2796. https://doi.org/10.1139/v71-464

Horning D. E., Lacasse G., Muchowski J. M. Isocarbostyrils. II. The conversion of 2-methyl-4-acyl-5-nitroisocarbostyrils to 2-substituted indole-4-carboxylic acids. Canad. Journ. Chem. 1971, 49 (17), 2797-2802. https://doi.org/10.1139/v71-465

Ghosal S., Singh S., Kumar Y., Srivastava R. S. Isocarbostyril alkaloids from Haemanthus kalbreyeri. Phytochem. 1989, 28 (2), 611-613. https://doi.org/10.1016/0031-9422(89)80061-5

Ji Y. B., Zheng J., Chen N., Song D. X., Dong Y., Wang B. F. In Isocarbostyril alkaloids and their derivatives as promising antitumor agents, Applied Mechanics and Materials, 2013; pp 3150-3153. https://doi.org/10.4028/www.scientific.net/AMM.411-414.3150

Krane B. D., Shamma M. The isoquinolone alkaloids. Journ. Natur. Prod. 1982, 45 (4), 377-384. https://doi.org/10.1021/np50022a001

Doroshenko A. O., Ponomarev O. A., Mitina V. G. Theoretical approach to the problem of finding effective luminophors in the isocarbostyril series. Theor. Exper. Chem. 1988, 24 (460-464), 460. https://doi.org/10.1007/BF00535122

Doroshenko A. O., Ponomarev O. A., Mitina V. G., Ivanov V. V. Luminescence-spectral characteristics of nitro derivatives of 1(2h)-isoquinolone. Theor. Exper. Chem. 1988, 24 (5), 581-586. https://doi.org/10.1007/BF00534426

Henry R. A., Heller C. A., Moore D. W. Preparation and fluorescence of substituted 2-methyl-1-isoquinolones. Journ. Org. Chem. 1975, 40 (12), 1760-1766. https://doi.org/10.1021/jo00900a018

Niko Y., Konishi G.-i. Molecular design of highly fluorescent dyes. Journ. Synth. Org. Chem. Japan 2012, 70 (9), 918-927. https://doi.org/10.5059/yukigoseikyokaishi.70.918

Lippert E. Spektroskopische untersuchung der fluoreszenz von nitroverbindungen. Z. Phys. Chem. 1954, 2 328-35. https://doi.org/10.1524/zpch.1954.2.5_6.328

Lippert E., Kelm J. Spektroskopische untersuchungen über die rolle des käfig-effektes bei der prädissoziation aromatischer nitroverbindungen. Helv. Chim. Acta 1978, 61 (1), 279-285. https://doi.org/10.1002/hlca.19780610125

Zugazagoitia J. S., Almora-Díaz C. X., Peon J. Ultrafast intersystem crossing in 1-nitronaphthalene. An experimental and computational study. Journ. Phys. Chem. A 2008, 112 (3), 358-365. https://doi.org/10.1021/jp074809a

Plaza-Medina E. F., Rodríguez-Córdoba W., Morales-Cueto R., Peon J. Primary photochemistry of nitrated aromatic compounds: Excited-state dynamics and no· dissociation from 9-nitroanthracene. Journ. Phys. Chem. A 2011, 115 (5), 577-585. https://doi.org/10.1021/jp109041y

Mewes J.-M., Jovanovic V., Marian C. M., Dreuw A. On the molecular mechanism of non-radiative decay of nitrobenzene and the unforeseen challenges this simple molecule holds for electronic structure theory. Phys. Chem. Chem. Phys. 2014, 16 12393-12406. https://doi.org/10.1039/C4CP01232A

Giussani A., Worth G. A. Insights into the complex photophysics and photochemistry of the simplest nitroaromatic compound: A caspt2//casscf study on nitrobenzene. Journ. Chem. Theor. Comput. 2017, 13 (6), 2777-2788. https://doi.org/10.1021/acs.jctc.6b01149

Guzmán-Méndez Ó., Reza M. M., Meza B., Jara-Cortés J., Peón J. Solvent effects on the singlet–triplet couplings in nitroaromatic compounds. Journ. Phys. Chem. B 2023, 127 (25), 5655-5667. https://doi.org/10.1021/acs.jpcb.3c01143

Vörös D., Mai S. Role of ultrafast internal conversion and intersystem crossing in the nonadiabatic relaxation dynamics of ortho-nitrobenzaldehyde. Journ. Phys. Chem. A 2023. https://doi.org/10.1021/acs.jpca.3c02899

El-Sayed M. A. Spin-orbit coupling and the radiationless processes in nitrogen heterocyclics. J. Chem. Phys. 1963, 38 (12), 2834-2838. https://doi.org/10.1063/1.1733610

Lower S. K., El-Sayed M. A. The triplet state and molecular electronic processes in organic molecules. Chem. Rev. 1966, 66 (2), 199-241. https://doi.org/10.1021/cr60240a004

El-Sayed M. A. Triplet state. Its radiative and nonradiative properties. Acc. Chem. Res. 1968, 1 (1), 8-16. https://doi.org/10.1021/ar50001a002

Chen M.-C., Chen D.-G., Chou P.-T. Fluorescent chromophores containing the nitro group: Relatively unexplored emissive properties. ChemPlusChem 2021, 86 (1), 11-27. https://doi.org/10.1002/cplu.202000592

Poronik Y. M., Sadowski B., Szychta K., Quina F. H., Vullev V. I., Gryko D. T. Revisiting the non-fluorescence of nitroaromatics: Presumption versus reality. Journ. Mater. Chem. C 2022, 10 (8), 2870-2904. https://doi.org/10.1039/D1TC05423F

Chumak A. Y., Mudrak V. O., Kotlyar V. M., Doroshenko A. O. 4’-nitroflavonol fluorescence: Excited state intramolecular proton transfer reaction from the non-emissive excited state. J. Photochem. Photobiol. A: Chem. 2021, 406 112978. https://doi.org/10.1016/j.jphotochem.2020.112978

Glushkov V. A., Shklyaev Y. V. Synthesis of 1(2h)-isoquinolones. (review). Chem. Heterocyclic Comp. 2001, 37 (6), 663-687.

Siano D. B., Metzler D. E. Band shapes of the electronic spectra of complex molecules. Journ. Chem. Phys. 1969, 51 (5), 1856-1861. https://doi.org/10.1063/1.1672270

Dunning T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. Journ. Chem. Phys. 1989, 90 (2), 1007-1023. https://doi.org/10.1063/1.456153

Becke A. D. Density-functional thermochemistry. Iii. The role of exact exchange. J. Chem. Phys. 1993, 98 (7), 5648-5652. https://doi.org/10.1063/1.464913

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomer J., J.A. , Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, revision b.01, Gaussian, Inc.: Wallingford CT, 2010.

Bader R. F. W. Atoms in molecules. Acc. Chem. Res. 1985, 18 (1), 15-18. https://doi.org/10.1021/ar00109a003

Bader R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91 (5), 893-928. https://doi.org/10.1021/cr00005a013

Espinosa E., Molins E., Lecomte C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285 (3), 170-173. https://doi.org/10.1016/S0009-2614(98)00036-0

Luzanov A. V., Zhikol O. A. Electron invariants and excited state structural analysis for electronic transitions within cis, rpa, and tddft models. Int. J. Quant. Chem. 2009, 110 (4), 902-924. https://doi.org/10.1002/qua.22041

Luzanov A. V., Zhikol O. A. Excited state structural analysis: Tddft and related models. In Practical aspects of computational chemistry i, Leszczynski, J.; Shukla, M. K., Eds. Springer: Dordrecht, 2011. https://link.springer.com/chapter/10.1007%2F978-94-007-0919-5_14

Bylaska E. J., de Jong W. A., Govind N., Kowalski K., Straatsma T. P., Valiev M., Wang D., Apra E., Windus T. L., Hammond J., Nichols P., Hirata S., Hackler M. T., Zhao Y., Fan P.-D., Harrison R. J., Dupuis M., Smith D. M. A., Nieplocha J., Tipparaju V., Krishnan M., Wu Q., Van Voorhis T., Auer A. A., Nooijen M., Brown E., Cisneros G., Fann G. I., Fruchtl H., Garza J., Hirao K., Kendall R., Nichols J. A., Tsemekhman K., Wolinski K., Anchell J., Bernholdt D., Borowski P., Clark T., Clerc D., Dachsel H., Deegan M., Dyall K., Elwood D., Glendening E., Gutowski M., Hess A., Jaffe, Johnson B., Ju J., Kobayashi R., Kutteh R., Lin Z., Littlefield R., Long X., Meng B., Nakajima T., Niu S., Pollack L., Rosing M., Sandrone G., Stave M., Taylor H., Thomas G., van Lenthe J., Wong A., Zhang Z. Nwchem, a computational chemistry package for parallel computers, version 5.1, Pacific Northwest National Laboratory, Richland, Washington, 99352-0999, USA: 2007.

Neese F. The ORCA program system. WIREs Comp. Molec. Sci. 2012, 2 (1), 73-78. https://doi.org/10.1002/wcms.81

Neese F., Wennmohs F., Becker U., Riplinger C. The ORCA quantum chemistry program package. Journ. Chem. Phys. 2020, 152 (22). https://doi.org/10.1063/5.0004608

Bader R. F. W. A bond path: A universal indicator of bonded interactions. J. Phys. Chem. A 1998, 102 (37), 7314-7323. https://doi.org/10.1021/jp981794v

Robinson G. W., Frosch R. P. Electronic excitation transfer and relaxation. J. Chem. Phys. 1963, 38 (5), 1187-1205. https://doi.org/10.1063/1.1733823

Published
2022-09-27
Cited
How to Cite
Chepeleva, L., & Doroshenko, A. (2022). Fluorescence of 4- and 5-nitro isocarbostyryl derivatives revisited. Kharkiv University Bulletin. Chemical Series, (39), 21-29. https://doi.org/10.26565/2220-637X-2022-39-02