Fluorescence of 4- and 5-nitro isocarbostyryl derivatives revisited
Abstract
Spectral properties of several selected nitro substituted isocarbostyrils (I, isoquinoline-2H-1-ones) were discovered in our research group several decades ago. These relatively small molecules demonstrated unusual spectral behavior: they were highly solvatochromic and 5-nitro-I appeared fluorescent in solvents of intermediate-to-high polarity. UV-vis spectra of the title compounds were studied previously both experimentally and theoretically, however, on the quite low level of quantum theory (π-electronic approximation). The aim of the current communication is to reconsider them on DFT/TDDFT level with the account of the nπ* states localized on NO2-group spin-orbit coupling analyses and radiationless intersystem crossing (ISC) process, which regulates the fluorescent properties of nitro-substituted aromatic compounds.
Received 27.09.2022
Accepted 29.11.2022
Downloads
References
Fernau A. Über isocarbostyril. Monatsh. Chem. 1893, 14 (1), 59-70. https://doi.org/10.1007/BF01517857
Wibaut J. P., Haaijman P. W. On a remarkable formation of isocarbostyril from isoquinoline. Rec. Trav. Chim. 1943, 62 (7), 466-468. https://doi.org/10.1002/recl.19430620710
Horning D. E., Lacasse G., Muchowski J. M. Isocarbostyrils. I. Electrophilic substitution reactions. Canad. Journ. Chem. 1971, 49 (17), 2785-2796. https://doi.org/10.1139/v71-464
Horning D. E., Lacasse G., Muchowski J. M. Isocarbostyrils. II. The conversion of 2-methyl-4-acyl-5-nitroisocarbostyrils to 2-substituted indole-4-carboxylic acids. Canad. Journ. Chem. 1971, 49 (17), 2797-2802. https://doi.org/10.1139/v71-465
Ghosal S., Singh S., Kumar Y., Srivastava R. S. Isocarbostyril alkaloids from Haemanthus kalbreyeri. Phytochem. 1989, 28 (2), 611-613. https://doi.org/10.1016/0031-9422(89)80061-5
Ji Y. B., Zheng J., Chen N., Song D. X., Dong Y., Wang B. F. In Isocarbostyril alkaloids and their derivatives as promising antitumor agents, Applied Mechanics and Materials, 2013; pp 3150-3153. https://doi.org/10.4028/www.scientific.net/AMM.411-414.3150
Krane B. D., Shamma M. The isoquinolone alkaloids. Journ. Natur. Prod. 1982, 45 (4), 377-384. https://doi.org/10.1021/np50022a001
Doroshenko A. O., Ponomarev O. A., Mitina V. G. Theoretical approach to the problem of finding effective luminophors in the isocarbostyril series. Theor. Exper. Chem. 1988, 24 (460-464), 460. https://doi.org/10.1007/BF00535122
Doroshenko A. O., Ponomarev O. A., Mitina V. G., Ivanov V. V. Luminescence-spectral characteristics of nitro derivatives of 1(2h)-isoquinolone. Theor. Exper. Chem. 1988, 24 (5), 581-586. https://doi.org/10.1007/BF00534426
Henry R. A., Heller C. A., Moore D. W. Preparation and fluorescence of substituted 2-methyl-1-isoquinolones. Journ. Org. Chem. 1975, 40 (12), 1760-1766. https://doi.org/10.1021/jo00900a018
Niko Y., Konishi G.-i. Molecular design of highly fluorescent dyes. Journ. Synth. Org. Chem. Japan 2012, 70 (9), 918-927. https://doi.org/10.5059/yukigoseikyokaishi.70.918
Lippert E. Spektroskopische untersuchung der fluoreszenz von nitroverbindungen. Z. Phys. Chem. 1954, 2 328-35. https://doi.org/10.1524/zpch.1954.2.5_6.328
Lippert E., Kelm J. Spektroskopische untersuchungen über die rolle des käfig-effektes bei der prädissoziation aromatischer nitroverbindungen. Helv. Chim. Acta 1978, 61 (1), 279-285. https://doi.org/10.1002/hlca.19780610125
Zugazagoitia J. S., Almora-Díaz C. X., Peon J. Ultrafast intersystem crossing in 1-nitronaphthalene. An experimental and computational study. Journ. Phys. Chem. A 2008, 112 (3), 358-365. https://doi.org/10.1021/jp074809a
Plaza-Medina E. F., Rodríguez-Córdoba W., Morales-Cueto R., Peon J. Primary photochemistry of nitrated aromatic compounds: Excited-state dynamics and no· dissociation from 9-nitroanthracene. Journ. Phys. Chem. A 2011, 115 (5), 577-585. https://doi.org/10.1021/jp109041y
Mewes J.-M., Jovanovic V., Marian C. M., Dreuw A. On the molecular mechanism of non-radiative decay of nitrobenzene and the unforeseen challenges this simple molecule holds for electronic structure theory. Phys. Chem. Chem. Phys. 2014, 16 12393-12406. https://doi.org/10.1039/C4CP01232A
Giussani A., Worth G. A. Insights into the complex photophysics and photochemistry of the simplest nitroaromatic compound: A caspt2//casscf study on nitrobenzene. Journ. Chem. Theor. Comput. 2017, 13 (6), 2777-2788. https://doi.org/10.1021/acs.jctc.6b01149
Guzmán-Méndez Ó., Reza M. M., Meza B., Jara-Cortés J., Peón J. Solvent effects on the singlet–triplet couplings in nitroaromatic compounds. Journ. Phys. Chem. B 2023, 127 (25), 5655-5667. https://doi.org/10.1021/acs.jpcb.3c01143
Vörös D., Mai S. Role of ultrafast internal conversion and intersystem crossing in the nonadiabatic relaxation dynamics of ortho-nitrobenzaldehyde. Journ. Phys. Chem. A 2023. https://doi.org/10.1021/acs.jpca.3c02899
El-Sayed M. A. Spin-orbit coupling and the radiationless processes in nitrogen heterocyclics. J. Chem. Phys. 1963, 38 (12), 2834-2838. https://doi.org/10.1063/1.1733610
Lower S. K., El-Sayed M. A. The triplet state and molecular electronic processes in organic molecules. Chem. Rev. 1966, 66 (2), 199-241. https://doi.org/10.1021/cr60240a004
El-Sayed M. A. Triplet state. Its radiative and nonradiative properties. Acc. Chem. Res. 1968, 1 (1), 8-16. https://doi.org/10.1021/ar50001a002
Chen M.-C., Chen D.-G., Chou P.-T. Fluorescent chromophores containing the nitro group: Relatively unexplored emissive properties. ChemPlusChem 2021, 86 (1), 11-27. https://doi.org/10.1002/cplu.202000592
Poronik Y. M., Sadowski B., Szychta K., Quina F. H., Vullev V. I., Gryko D. T. Revisiting the non-fluorescence of nitroaromatics: Presumption versus reality. Journ. Mater. Chem. C 2022, 10 (8), 2870-2904. https://doi.org/10.1039/D1TC05423F
Chumak A. Y., Mudrak V. O., Kotlyar V. M., Doroshenko A. O. 4’-nitroflavonol fluorescence: Excited state intramolecular proton transfer reaction from the non-emissive excited state. J. Photochem. Photobiol. A: Chem. 2021, 406 112978. https://doi.org/10.1016/j.jphotochem.2020.112978
Glushkov V. A., Shklyaev Y. V. Synthesis of 1(2h)-isoquinolones. (review). Chem. Heterocyclic Comp. 2001, 37 (6), 663-687.
Siano D. B., Metzler D. E. Band shapes of the electronic spectra of complex molecules. Journ. Chem. Phys. 1969, 51 (5), 1856-1861. https://doi.org/10.1063/1.1672270
Dunning T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. Journ. Chem. Phys. 1989, 90 (2), 1007-1023. https://doi.org/10.1063/1.456153
Becke A. D. Density-functional thermochemistry. Iii. The role of exact exchange. J. Chem. Phys. 1993, 98 (7), 5648-5652. https://doi.org/10.1063/1.464913
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomer J., J.A. , Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, revision b.01, Gaussian, Inc.: Wallingford CT, 2010.
Bader R. F. W. Atoms in molecules. Acc. Chem. Res. 1985, 18 (1), 15-18. https://doi.org/10.1021/ar00109a003
Bader R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91 (5), 893-928. https://doi.org/10.1021/cr00005a013
Espinosa E., Molins E., Lecomte C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285 (3), 170-173. https://doi.org/10.1016/S0009-2614(98)00036-0
Luzanov A. V., Zhikol O. A. Electron invariants and excited state structural analysis for electronic transitions within cis, rpa, and tddft models. Int. J. Quant. Chem. 2009, 110 (4), 902-924. https://doi.org/10.1002/qua.22041
Luzanov A. V., Zhikol O. A. Excited state structural analysis: Tddft and related models. In Practical aspects of computational chemistry i, Leszczynski, J.; Shukla, M. K., Eds. Springer: Dordrecht, 2011. https://link.springer.com/chapter/10.1007%2F978-94-007-0919-5_14
Bylaska E. J., de Jong W. A., Govind N., Kowalski K., Straatsma T. P., Valiev M., Wang D., Apra E., Windus T. L., Hammond J., Nichols P., Hirata S., Hackler M. T., Zhao Y., Fan P.-D., Harrison R. J., Dupuis M., Smith D. M. A., Nieplocha J., Tipparaju V., Krishnan M., Wu Q., Van Voorhis T., Auer A. A., Nooijen M., Brown E., Cisneros G., Fann G. I., Fruchtl H., Garza J., Hirao K., Kendall R., Nichols J. A., Tsemekhman K., Wolinski K., Anchell J., Bernholdt D., Borowski P., Clark T., Clerc D., Dachsel H., Deegan M., Dyall K., Elwood D., Glendening E., Gutowski M., Hess A., Jaffe, Johnson B., Ju J., Kobayashi R., Kutteh R., Lin Z., Littlefield R., Long X., Meng B., Nakajima T., Niu S., Pollack L., Rosing M., Sandrone G., Stave M., Taylor H., Thomas G., van Lenthe J., Wong A., Zhang Z. Nwchem, a computational chemistry package for parallel computers, version 5.1, Pacific Northwest National Laboratory, Richland, Washington, 99352-0999, USA: 2007.
Neese F. The ORCA program system. WIREs Comp. Molec. Sci. 2012, 2 (1), 73-78. https://doi.org/10.1002/wcms.81
Neese F., Wennmohs F., Becker U., Riplinger C. The ORCA quantum chemistry program package. Journ. Chem. Phys. 2020, 152 (22). https://doi.org/10.1063/5.0004608
Bader R. F. W. A bond path: A universal indicator of bonded interactions. J. Phys. Chem. A 1998, 102 (37), 7314-7323. https://doi.org/10.1021/jp981794v
Robinson G. W., Frosch R. P. Electronic excitation transfer and relaxation. J. Chem. Phys. 1963, 38 (5), 1187-1205. https://doi.org/10.1063/1.1733823