Properties of the fullerene C60 colloid solutions in acetonitrile as prepared by Deguchi’s hand-grinding method
Abstract
In this communication, we describe some colloidal properties of the fullerene C60 organosol in acetonitrile, prepared using the Deguchi’s hand-grinding technique. The negatively charged colloidal particles with zeta potential about –30 mV possess the size of 200–300 nm, as determined using the dynamic light scattering method. The transmission electron microscopy images confirm these estimates. The origin of the negative charge of the colloidal species is ascribed to the formation and re-combination of free radicals; in the presence of the radical scavenger 2,6-di-tert-butyl-4-methylphenol, the colloidal system appeared to be more polydispersed and the species exhibited a substantially less negative zeta-potential. The coagulation via electrolytes has been registered using the UV-spectroscopy and dynamic light scattering. In the presence of inorganic cations, especially hydrogen ions and double-charged calcium ions, the colloidal particles are readily re-charged, and the zeta-potential becomes substantially positive.
Downloads
References
K. N. Semenov, N. A. Charykov, V. A. Keskinov, A. K. Piartman, A. A. Blokhin, A. A. Kopyrin // J. Chem. Eng. Data 2010. Vol. 55. P. 13–36.
N. O. Mchedlov-Petrossyan // Chem. Rev. 2013. Vol. 113. P. 5149–5193.
H. N. Ghosh, A. V. Sapre, J. P. Mittal // J. Phys. Chem. 1996. Vol. 100. P. 9439–9443.
M. Fujitsuka, H. Kasai, A. Masuhara, S. Okada, H. Oikawa, H. Nakanishi, A. Watanabe, O. Ito // Chem. Lett. 1997. P. 1211–1212.
H. Nath, A. Pal, V. Sapre // Chem. Phys. Lett. // 2000. Vol. 327. P. 143–148.
R. G. Alargova, S. Deguchi, K. Tsujii // J. Am. Chem. Soc. 2001. Vol. 123. P. 10460–10467.
M. Alfè, B. Apicella, R. Barbella, A. Bruno, A. Ciajdo // Chem. Phys. Lett. 2005. Vol. 405. P. 193–197.
S. Deguchi, S.-a. Mukai // Chem. Lett. 2006. Vol. 35. P. 396–397.
M. V. Avdeev, V. L. Aksenov, T. V. Tropin // Russ. J. Phys. Chem. A 2010. Vol. 84. P. 1273 1283.
O. A. Kyzyma, T. O. Kyrey, M. V. Avdeev, M.V. Korobov, L. A. Bulavin, V. L. Aksenov // Chem. Phys. Lett. 2013. Vol. 556. P. 178–181.
E. J. E. Stuart, K. Tschulik, C. Batchelor-McAuley, R. G. Compton // ACS Nano 2014. Vol. 8. P. 7648–7654.
D. A. Friedrichsberg. The Course of Colloid Chemistry (in Russian) Leningrad, Khimiya, 1984. 368 p.
S. Deguchi, S.-a. Mukai, T. Yamazaki, M. Tsudome, K. Horikoshi // J. Phys. Chem. C. 2010. Vol. 114. P. 849–856.
N. O. Mchedlov-Petrossyan, N. N. Kamneva, Y. T. M. Al-Shuuchi, A. I. Marynin, O. S. Zo-zulia, A. P. Kryshtal, V. K. Klochkov, S. V. Shekhovtsov // Phys. Chem. Chem. Phys. 2016. Vol. 18, P. 2571-2526
N. O. Mchedlov-Petrosyan, V. K. Klochkov, G. V. Andrievsky, A. S. Shumakher, V. N. Kleshchevnikova, V. L. Koval, S. A. Shapovalov, N. A. Derevyanko, A. A. Ishchenko // Sci. Appl. Photo. 2001. Vol. 43. P. 1–13; Chem. Abstr. CAN 2001. 135:127629.
I. M. Kolthoff // Anal. Chem. 1974. Vol. 46. P. 1992–2003.
C. Kalidas, G. Hefter, Y. Marcus // Chem. Rev. 2000. Vol. 100. 819–852.
K. L. Chen, M. Elimelech // Env. Sci. Technol. 2009. Vol. 43. P. 7270–7276.