Visibility analysis of the urbanistic environmet as a constituent of the urbogeosystems approach

Keywords: visual analysis, urbogeosystem, urbanistic environment, visibility Hemisphere, formalized parameters, VA-functionality, web-GIS-application

Abstract

This paper recognizes the conceptual approach to the visual analysis of an urbogeosystem (VA UGS), which is within the Urban Studies domain. This approach stays within Human Geography frameworks and based on visibility estimation in the urbanistic environment (UE). The definition of UE is represented as a 3D-formalized model of an actual city environment (CE). In general, our work is a further development of the methodological urbogeosystem concept once introduced by one of this paper’s authors. This concept has been previously explained as a twofold functional entity, which is a base for delineation and analysis of the CE urbogeosystemic properties. The basic possibility of VA UGS has been explained as a possibility, that follows from the circumstance, according to which UE is a quasi-rasterized model of a continual nature of an actual city space and its key features. Then, this model of city continuality can be contrasted with the discrete nature of an urbogeosystem – a hierarchical aggregate of urban features. Exactly this contraposition (continuality versus discrete content) provides the basics for the visual analysis.

This research introduces the Visibility Hemisphere concept (VHC), what supposes those conditions of visibility, which do correspond to ambient optic array ones. The Line of Sight (LoS) has been represented as a significant VHC component. Transformation of 2D LoS into 3D-segment of Visibility Hemisphere has been briefly explained within the stereometric frameworks. A number of formalized parameters have been introduced on the base of VHC. Computation of these parameters is the first stage of VA UGS introduction. The introduced approach has been further implemented as the VA-functionality of a web-GIS-application and illustrated with a few interface samples. Visual analysis of Munster-city UGS (Germany) has been provided within this research as a use-case of three scenarios comparative estimation of urban environment developed changes. Possible negative visual impact has been evaluated for each of the scenarios.  

Downloads

Download data is not yet available.

Author Biographies

Sergiy Kostrikov , V.N. Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv, 61022, Ukraine

DSc (Geography), Professor of the Department of Human Geography and Regional Studies

Denys Serohin, V.N. Karazin Kharkiv National University, Svobody Sq., 4, Kharkiv, 61022, Ukraine

PhD Student of the Department of Human Geography and Regional Studies

Vitaliy Berezhnoy

PhD (Geography), Individual entrepreneur in Computer programming and consultancy

References

Kostrikov, S., Niemets, L., Sehida, K., Niemets, K., & Morar, C. (2018). Geoinformation approach to the urban geo-graphic system research (case studies of Kharkiv region). Visnyk of V.N. Karazin Kharkiv National University, series "Geology. Geography. Ecology". Kh.: KhNU, 49, 107-121. https://doi.org/10.26565/2410-7360-2018-49-09

Kostrikov, S. (2019). Urban Remote Sensing with LiDAR for the Smart City concept implementation. Visnyk of V. N. Karazin Kharkiv National University, series "Geology. Geography. Ecology". Kh.: KhNU, 50, 101-124.

Kostrikov, S., Bubnov, D., Kostrikova, A., & Pudlo, R. (2018). Web-zastosuvannya ELiT – prohramne zab-ezpechennya dlya modelyuvannya i analizu miskoho seredovyshcha. Zbirnyk materialiv Mizhnarodnoi naukovo-praktychnoi konferentsii «GIS-Forum»-2018», Kharkiv, 56-59 [in Ukrainian]. https://doi.org/10.26565/2410-7360-2019-50-08

Serohin, D., & Kostrikov, S. (2020). Osoblyvosti ta perevahy GIS-modelyuvannya miskoho seredovyshcha na pid-stavi lidarnoi informatsii. Proceedings of the International Scientific and Practical Conference Region-2020: Opti-mal Development Strategy. Kharkiv: KhNU imeni V.N. Karazina, 34-36 [in Ukrainian].

Kostrikov, S., & Popovych, O. (2018). Realizatsiya multyfunktsionalnoho pidkhodu do analizu urbanistychnoho seredovyshcha cherez geoinformatsiyne veb-zastosuvannya. Proceedings of the International Scientific and Practical Conference Region-2018: Optimal Development Strategy. Kharkiv, 24-28 [in Ukrainian].

Chuiev, O., & Kostrikov, S. (2016). Analiz dvorivnevykh urboheosystem cherez zasoby GIS. Visnyk of V.N. Karazin Kharkiv National University, series "Geology. Geography. Ecology. Kharkiv: Vydavnytstvo KhNU, 44, 98-109 [in Ukrainian].

Bezruk, V., Kostrikov, S., & Chuiev O. (2016). GIS-analiz funktsii urbogeosystemy z metoyu optymizatsii rozmishchennya zakladiv hromadskoho kharchuvannya (na prykladi m. Kharkiv). Chasopys sotsialno-ekonomichnoi geografii – Human Geography Journal. Kharkiv: Vydavnytstvo KhNU, 21 (2), 91-101 [in Ukrainian].

Lynch K., Appleyard D., Meyer J.R. 1964. The View From the Road. – MIT Press, Cambridge, MA. – 258 p.

Lynch K. 1976. Managing the Sense of Regions. – MIT Press, Cambridge, MA. – 678 p.

Cullen, G. 1971. The concise townscape. The Architectural Press. – 199 p.

Benedikt, M. L., 1979. To take hold of space: Isovist fields // Environment and Planning B: Planning and Design – Vol. 6. – pp.47-65.

Broadbent G. 1990. Emerging Concepts in Urban Design. – New York: Van Nostrand Reinhold International. – 392 p.

Wang J., Robinson G., White K. Fast solution to local viewshed computation using grid-based digital elevation models // Photogrammetric Engineering & Remote Sensing. – 1996. – Vol. 62. – No. 10. – pp. 1157-1164.

Lovett A. GIS-based visualisation of rural landscapes: defining ‘sufficient’ realism for environmental decision-making // Landscape and Urban Planning. – 2003. – Vol. 65. – no. 3. – pp. 117–131.

Tandy C.R.V. 1967. The isovist method of landscape survey // Methods of Landscape Analysis Ed. H C Murray, Landscape Research Group, PO Box 53, Horspath, Oxford, OX331WX.

Morello E., Rattі, C., 2009. A digital image of the city: 3D isovists in Lynch’s urban analysis // Environment and Planning B: Planning and Design 36(5), pp. 837-853.

Rana, S., 2006. Isovist analyst: an arcview extension for planning visual surveillance. – ArcGIS Press. – 32 p.

Batty M. Exploring isovist fields: space and shape in architectural and urban morphology // Environment and Planning B: Planning and Design – 2001. Vol. 28. – pp. 123-150.

Bilsen A. Van, Stolk E.H. The potential of Isovist Based Visibility Analysis // Bekkering, H. et al. The Architectural Annual (Delft) 010 Publishers, 2007. – pp. 68-73.

Lake I.R., Lovett A.A., Bateman I.J. Using GIS - and large-scale digital data to implement hedonic pricing studies // International Journal of Geographical Information Science. – 2000. – Vol. 14(6), pp. 521-541.

Brossard T., Joly D. Tourneux, F. Modélisation opérationnelle du paysage // Paysage et information géographique. La-voisier, 2008. – pp. 117-137.

Bartie P., Reitsma F., Kingham S., Mills S. Advancing visibility modelling algorithms for urban environments // Com-puters, Environment and Urban Systems. – 2010. – Vol. 34. – no. 6, рр. 518-531.

Natapov A., Czamanski D., Fisher-Gewirtzman D. Can visibility predict location? Visibility graph of food and drink facilities in the city // Survey Review. – 2013. Vol. 45. – pp. 462-471.

Bratt. S., Booth B. Using ArcGIS 3D Analysis. - ESRI, Redlands, CA, 2007. – 147 p.

Pyysalo U., Oksanen J., Sarjakoski T. Viewshed analysis and visualization of land-scape voxel models // 24th Interna-tional Cartographic Conference, Santiago, Chile. – 2009. – P. 124-135.

Bosselmann P. Representation of Places: Reality and Realism in City Design. – University of California Press, Berkeley, CA, 1998. – 228 p.

Ratti C. Urban Analysis for Environmental Prediction PhD thesis. – University of Cambridge. – 2002. – 567 р.

Gal T., Lindberg F., Unger J. Computing continuous sky view factor using 3D urban raster and vector databases: com-parison and application to urban climate // Theoretical and Applied Climatology/ - 2009.- Vol. 95. – P. 111-123.

Putra S.Y., Yang P., Li W. GIS-based 3D visibility analysis for a high-density urban housing environment // Proceedings of 5th China Urban Housing Conference . – 2005. - P. 567-578 (Text in Chinese with the English Extended summary).

Yang P., Putra S.Y., Li W. Impacts of density and typology on design strategies and visual quality of urban environ-ment // Proceedings of Map Asia 2005 Conference in Jakarta. – 2005. – P. 331-338 (Text in Chinese with the English Extended summary).

Kostrikov S., Pudlo R., Bubnov D., Vasiliev V. ELiT, Multifunctional Web-Software for Feature Extraction from 3D LiDAR Point Clouds // ISPRS International Journal of Geo-Informatiom. – 2020. – Vol. 9 (11). – P. 650 -685.

Fisher-Gewirtzman D., Wagner I. A. Spatial openness as a practical metric for evaluating built-up environments // Environment and Planning B: Planning and Design. 2003 – Vol. 30. – P. 37-49.

Teller J. A spherical metric for the field-oriented analysis of complex urban open spaces // Environment and Planning B: Planningand Design. 2003. – Vol. 30. – P. 339-356.

Turner A., Doxa M., O'Sullivan D, Penn A. 2007. From isovists tovisibilitygraphs: a methodology for the analysis of architectural space // Environment and Planning B: Planning and Design. – Vol. 28. – P. 103-121.

Zvolinski A. A day in a shadow of high-rise: 3D parameterization and use of public space around pżm / hotel radisson building complex in center of Szczecin // Architecture et Artibus. – 2014. – Vol. 1. – P. 67-71.

Rana S., Batty M. Visualising the structure of architectural open space based on shape analysis // International Journal of Architectural Computing. – 2004. – Vol. 18. – P. 1123-1132.

Xia Z., Qing Z. 3D City Models Based Spatial Analysis to Urban Design // Annals of GIS, 2004. – Vol. 10 (1). – P. 82-86.

Czynska K. Application of lidar data and 3D-city models in visual impact simulations of tall buildings. Int. Arch. Pho-togramm. Remote Sens. Spat. Inf. Sci. 2015, 40, pp. 1359-1366.

Czyńska, K. Tall buildings and harmonious landscape // Space and Form. – N. 13. – P. 267-280.

Gibson J.J. The Ecological Approach to Visual Perception. – Lawrence Erlbaum, Hillsdale, NJ, 1986. – 548 p.

Franklin W.R. Siting observers on terrain. In: Richardson D, van Oosterom P, eds. Advances in Spatial Data Handling: 10th International Symposium on Spatial Data Handling, Berlin, 2002. – P. 109–120.

Omer I, Goldblatt R. The implications of inter-visibility between landmarks on wayfinding performance: An investiga-tion using a virtual urban environment // Computers, Environment and Urban Systems. – 2007. – Vol. 31. – P. 520-534.

Batty M., Rana S. The automatic definition and generation of axial lines and axial maps // Environment and Planning B: Planning and Design. – 2004. – Vol. 28. – P. 123-150.

Костріков С.В., Васильєв В.В., Пудло Р.А., Бубнов Д.Є. Дослідження міського середовища через його відтво-рення за допомогою обробки лідар-даних // Регіон – 2019: стратегія оптимального розвитку: матеріали міжна-родної науково-практичної конференції. – Харків: ХНУ імені В.Н. Каразіна, 2020. – С. 24-28.

Fisher-Gewirtzman D. Integrating ‘weighted views’ to quantitative 3D visibility analysis as a predictive tool for percep-tion of space // Environment and Planning B: Urban Analytics and City Science. – 2018. – Vol. 45. – no. 2. – P. 345-366.

Published
2021-06-10
Cited
How to Cite
Kostrikov , S., Serohin, D., & Berezhnoy, V. (2021). Visibility analysis of the urbanistic environmet as a constituent of the urbogeosystems approach. Human Geography Journal, 30, 7-23. https://doi.org/10.26565/2076-1333-2021-30-01
Section
Горизонти науки