MAGNETORESISTANCE OF YBA2CU3-ZALZO7-Δ SINGLE CRYSTALS WITH A SYSTEM OF UNIDIRECT PLANAR DEFECTS
Abstract
The work carried out electroresistive studies under the influence of a constant magnetic field up to 12.7 kOe at the orientation of the magnetic field vector Н ^ с and Н || с on different conductivity regimes of single crystals YBa2Cu3-zAlzO7-δ (z ≤ 0.5) with a unidirectional system of twin boundaries (TB) at the geometry of the flow of the transport current I || TB, when the influence of twins on the processes of scattering of current carriers is minimized. It was established that twin boundaries in single crystals YBa2Cu3-zAlzO7-δ (z ≤ 0.5) are effective centers of fluctuation carriers. The deviation from linearity of the dependences of the specific electrical resistance in the base ab-plane ρab(Т) at a temperature T in the interval Tс < T < 1.35 Tс can be satisfactorily explained within the framework of the theory of fluctuation superconductivity. At the same time, in the immediate vicinity of the critical temperature Tc, the fluctuation conductivity (FC) is well described by the three-dimensional Aslamazov – Larkin model. The application of a magnetic field leads to a significant narrowing of the temperature interval of the existence of three-dimensional superconducting fluctuations. The non-monotonic dependence of the coherence length along the c axis at T → 0 xс(0) on the magnetic field can probably be associated with the suppression of the excess fluctuation conductivity in the region of weak magnetic fields. The absence of the “fan-shaped” expansion of resistive transitions in the magnetic field, characteristic of impurity-free YBa2Cu3-zAlzO7-δ samples, is due to the suppression of the phase transition to the state of an unpinned vortex liquid due to the enhancement of the pinning of the vortex lattice at the twin boundaries.
Downloads
References
2. R. V. Vovk, M. A. Obolenskii, A. A. Zavgorodniy, A. V. Bondarenko, I. L. Goulatis, A. I. Chroneos. J. Mater. Sci: Mater. in Electron, 18, 811 (2007). https://link.springer.com/article/10.1007/s10854-006-9086-3
3. R. V. Vovk, M. A. Obolenskii, A. A. Zavgorodniy, D. A. Lotnyk, K. A. Kotvitskaya. Physica B, 404, 20, 3516 (2009). https://doi.org/10.1016/j.physb.2009.05.047
4. R. V. Vovk, Z. F. Nazyrov, M. A. Obolenskii et al. Journal of Alloys and Compounds, 509, 4553 (2011). https://doi.org/10.1016/j.jallcom.2011.01.102Get
5. A. V. Bondarenko, V. A. Shklovskij, M. A. Obolenskii et al. Physical Review B, 58, 5, 2445 (1998). https://doi.org/10.1103/PhysRevB.58.2445
6. N. Ya. Fogel, I. M. Dmitrenko, V. G. Cherkasova. SFKaT, 2, 115 (1989).
7. A. V. Bondarenko, A. A. Prodan, M. A. Obolenskii et al. Low Temp. Phys., 27, 339, (2001) http://dx.doi.org/10.1063/1.1374717
8. T. K. Worthington, F. H. Holtzberg, C. A. Field, Cryogenics, 30, 417 (1990). https://doi.org/10.1016/0011-2275(90)90168-C
9. R. V. Vovk, Z. F. Nazyrov, M. A. Obolenskii, I. L. Goulatis, A. Chroneos, V. M. Pinto Simoes. Philos. Mag., 91, 2291 (2011). https://doi.org/10.1080/14786435.2011.552893
10. R. B. Van Dover, L. F. Schneemeyer, J. V. Waszczak et al. Phys. Rev. В, 39, 2932 (1989). https://doi.org/10.1103/PhysRevB.39.2932
11. R. V. Vovk, M. A. Obolenskii, A. V. Bondarenko, I. L. Goulatis, A. V. Samoilov, A. Chroneos, V. M. Pinto Simoes. Journal of Alloys and Compounds, 464, 1-2, 58 (2008). https://doi.org/10.1016/j.jallcom.2007.10.040
12. R. V. Vovk, V. M. Gvozdikov, M. A. Obolenskii et al. Acta Physica Polonica A, 121, 1191 (2012).
13. L. G. Aslamazov, A. L. Larkin, Sov. Phys. Solid State, 10, 3258 (1968). https://www.osti.gov/biblio/7298727
14. J. S. Kouvel, M. E. Fischer, Phys. Rev., 136, A1616 (1964). https://journals.aps.org/pr/abstract/10.1103/PhysRev.136.A1626
15. R. M. Costa, I. C. Riegel, A. R. Jurelo, J. L. Pimentel Jr., Journal of Magnetism and Magnetic Materials, 320, e493 (2008).
https://doi.org/10.1016/j.jmmm.2008.02.093
16. W. K. Kwok, S. Fleshler, U. Welp,V. M. Vinokur, J. Downey, and G. W. Crabtree M. M. Miller. Phys. Rev. Lett., 69, 3370 (1992). https://doi.org/10.1103/PhysRevLett.69.3370 17. J. Rosenblatt. In: Percolation, Localization and Superconductivity, NATO ASI Series, ed. by A. M. Goldman and S. A. Wolf, Plenum, New York (1984), p.431. https://link.springer.com/book/10.1007/978-1-4615-9394-2
18. G. Lacayc, R. Hermann, G. Kaestener. Physica C, 192, 207 (1992).
19. R. V. Vovk, M. A. Obolenskii, Z. F. Nazyrov et al. J. Mater. Sci.: Mater. Electron., 23, 1255 (2012). https://link.springer.com/article/10.1007/s10854-011-0582-8
20. G. Blatter, J. Rhyner, V. M. Vinokur. Phys. Rev. B, 43, 10, 7026 (1991). https://doi.org/10.1103/PhysRevB.43.7826
21. J. B. Bieri, K. Maki, R. S. Thompson. Phys. Rev. B, 44, 9, 4709 (1991). https://doi.org/10.1103/PhysRevB.44.4709
22. G. D. Chryssikos, E. I. Kamitsos, J. A. Kapoutsis, A. P. Patsis, V. Psycharis, A. Kafoudakis, C. Mitros, G. Kallias, E. Gamari-Seale, D. Niarchos. Physica C, 254, 44 (1995). http://dx.doi.org/10.1016/0921-4534(95)00553-6
23. N. E. Alekseevskii, A. V. Mitin, V. I. Nizhankovskii, et al. Sverkhprovodimost Fiz., Khim, Tekhn., 2, 40 (1989).
24. D. A. Lotnyk, R. V. Vovk, M. A. Obolenskii et al. Journal of Low Temperature Physics, 161, 387 (2010). http://dx.doi.org/10.1007/s10909-010-0198-z
25. M. Daeumling, J. M. Seutjens, D. C. Larbalestier. Nature, 346, 332 (1990). http://dx.doi.org/10.1038/346332a0
26. T. K. Wortington, M. P. A. Fisher, D. A. Huse at el. Phys. Rev. B, 46, 18, 11854 (1992). https://doi.org/10.1103/PhysRevB.46.11854
27. Н. В. Radousky. J. Mater. Res., 7, 7, 1917 (1992). https://doi.org/10.1557/JMR.1992.1917
28. D. H. S. Smith, R. V. Vovk, C. D. H. Williams, A. F. G. Wyatt. Phys. Rev. B, 72, 0546506 (2005). https://doi.org/10.1103/PhysRevB.72.054506
29. D. H .S. Smith, R. V. Vovk, C. D. H. Williams, A. F. G. Wyatt. New J. Phys. 8, 128 (2006). http://dx.doi.org/10.1088/1367-2630/8/8/128
30. L. Reggani, R. Vaglio, A. A. Varlamov. Phys. Rev. B, 44, 17, 9541 (1991). http://dx.doi.org/10.1103/PhysRevB.44.9541
31. R. V. Vovk, A. A. Zavgorodniy, M. A. Obolenskii, I. L. Goulatis, A. Chroneos, V. M. Pinto Simoes. Modern Physics Letters B, 24, 22, 2295 (2010). https://doi.org/10.1142/S0217984910024675
32. R. V. Vovk, M. A. Obolenskii, A. A. Zavgorodniy, I. L. Goulatis, A. I. Chroneos. J. Mater. Sci.: Mater. Electron, 20, 858 (2009). http://dx.doi.org/10.1007/s10854-008-9806-y
33. R. V. Vovk, M. A. Obolenskii, A. A. Zavgorodniy, I. L. Goulatis, A. Chroneos, Е. V. Biletskiy. J. Alloys Compd, 485, 121 (2009). http://dx.doi.org/10.1007/s10854-008-9806-y
34. R. V. Vovk, A. A. Zavgorodniy, M. A. Obolenskii et al. J. Mater. Science: Materials in Electronics, 22, 20 (2011). https://doi.org/10.1007/s10854-010-0076-0
35. R. V. Vovk, Z. F. Nazyrov, I. L. Goulatis, A. Chroneos, Modern Physics Letters В (MPLB) Condensed Matter Physics; Statistical Physics and Applied Physics, 26, 1250163 (2012).




3.gif)