CRYSTAL STRUCTURE, DEFECTS, PINNING AND MAGNETIC FLUX DYNAMICS IN HTNP COMPOUNDS OF THE 1-2-3 SYSTEM (brief review)

  • R. V. Vovk V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine https://orcid.org/0000-0002-9008-6252
  • O. Yu. Vragov V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine https://orcid.org/0009-0006-0913-9035
  • M. M. Inozemtsev V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine https://orcid.org/0009-0002-6414-7776
  • V. O. Kovrygyn V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
  • A. O. Komisarov V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
  • M. V. Korobkov V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
  • V. F. Korshak V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine https://orcid.org/0000-0001-5957-3186
  • L. O. Pashchenko V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine https://orcid.org/0009-0006-3620-2749
  • G. Ya. Hadzhai V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine https://orcid.org/0000-0002-1257-8702
  • O. G. Chepurin V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine https://orcid.org/0009-0000-4055-5113
  • D. F. Yarchuk V. N. Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine https://orcid.org/0009-0009-6746-1315
Keywords: YBa2Cu3O7-δ single crystals, defects, pinning, vortex flux, magnetic flow, Peak effect, Fishtail effect, dynamics

Abstract

A brief review of phenomena related to the dynamics of magnetic flux and its pinning in HTSС compounds of the 1-2-3 system is made on the basis of literature data and our own research. The review includes experimental studies of changes in the temperature dependences of electrical resistance and current-voltage characteristics of single crystals of YBa2Cu3O7–δ under the influence of structural defects. Based on the features of the crystal structure of YBa2Cu3O7–δ and typical structural defects of this compound, the dynamics of magnetic flux and the influence of thermal fluctuations on this dynamics, the phase state and dynamics of the vortex system in HTSC compounds of the 1-2-3 system, in particular, pinning of the vortex lattice on defects, intrinsic pinning in the compound YBa2Cu3O7–δ, are considered. In high-temperature superconductors YBa2Cu3O7–δ, the Peak-effect is associated with both the adaptation of the vortex lattice to the pinning potential and the phase transitions from one state of the vortex lattice to another. The Fishtail effect in YBa2Cu3O7–δ can be due to phase transformations of the vortex lattice, the effect of bulk pinning, or the effect of Bean-Livingston surface barriers. The review contains a list of tasks that it is desirable to solve, in particular, the study of pinning and vortex dynamics in YBa2Cu3O7–δ single crystals containing only controlled defects; establishing the role of intergranular bonds in increasing the critical current and effective pinning potential; studying the effect of oxygen vacancy clusters on the Peak-effect.

Downloads

Download data is not yet available.

References

1. J. Etourneau. In Physics Abroad, Mir, M. (1989), p. 25 (in Russian).
2. J. D. Jorgencen, Pei Shiyou, P. Lightfoot, H. Shi, A. P. Paulikas, B. M. W. Veal. Physica C, 167, 571 (1990). https://doi.org/10.1016/0921-4534(90)90676-6
3. T. Kemin, H. Meisheng, W. Yening. J. Phys. Condens. Matter. 1, 1049 (1989). 10.1088/0953-8984/1/6/002
4. G. Lacayc, R. Hermann, G. Kaestener. Physica C, 192, 207 (1992). https://doi.org/10.1016/0921-4534(92)90762-2
5. V. M. Pan, V.L. Svechnikov, V.F. Solovjov, V.F. Taborov, H.W. Zandbergen and J.G. Wen. Supercond. Sci. Technol., 5, 707 (1992). https://doi.org/10.1088/0953-2048/5/12/002
6. P. H. Kes. In Proceedings of the Los Alamos Symposium “Phenomenology and Application of HTSC”. Los Alamos, NM. (1991), р. 22.
7. W. Gawalek, W. Schueppel, R. Hergt, W. Andra, K. Fischer and P. Gornert. Supercond. Sci. Technol., 5, S407 (1992). 10.1088/0953-2048/5/1S/094
8. V.V. Kvardakov, V.A. Somenkov, S.Sh. Shilshtein. Superconductivity: Physics, Chemistry, Technology, 5, 624 (1992) (in Russian).
9. V. Selvamanickam, M. Mironova, S. Son. Physica C, 208, 238 (1993). https://doi.org/10.1557/JMR.1993.0249
10. G. Roth, G. Heger, P. Schweiss, B. Renker, W. Aβmus, J. Kowalewski. Physica C: Superconductivity, 152, 4, 329 (1988).
https://doi.org/10.1016/0921-4534(88)90091-3
11. A. V. Bondarenko, A. A. Prodan, Yu. T. Petrusenko, V. N. Borisenko, F. Dworschak, U. Dedek. Magnetic and superconducting materials. World Scientific, A, 499 (1999). https://doi.org/10.1142/4365-vol1
12. A. V. Bondarenko, A. A. Prodan, Yu. T. Petrusenko, V. N. Borisenko, F. Dworschak, U. Dedek. Phys. Rev. B, 64, 92513(1) (2001). https://doi.org/10.1103/PhysRevB.64.092513
13. Physical properties of high temperature superconductors I. Ed. D.M. Ginsberg. World Scientific, 1989, ISBN 9971506831, 9789971506834, 516 p.
14. L. M. Paulius, P. K. Tsai, J. J. Neumeier et al. Appl. Phys. Lett., 58, 1792 (1991).
15. M. Tinkham. Introduction to superconductivity, Atomizdat, M. (1980), 310 p. (In Russian).
16. A. V. Bondarenko, M. A. Obolenekli, R. V. Vovk et al. In Proc. of 7th Int. Workshop on Grit. Cur. In Supercond., Alpbach, Austria (1995), p.177.
17. P. W. Anderson, Y. B. Kim. Rev. Mod. Phys., 36, 39 (1964). https://doi.org/10.1103/RevModPhys.36.39
18. M.R. Beasley, R. Labusch, W. W. Webb. Phys. Rev., 181, 682 (1969). https://doi.org/10.1103/PhysRev.181.682
19. A. I. Larkin, Yu. N. Ovchinnikov. Sov. Phys. JETP 38(4), 854 (1974).
20. M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, V. M. Vinokur. Phys. Rev. Lett., 63, 2303 (1989). https://doi.org/10.1103/PhysRevLett.63.2303
21. B. Roas, L. Schultz, G. Saemann-Isohenko. Phys. Rev. Lett., 64, 479 (1990). https://doi.org/10.1103/PhysRevLett.64.479
22. М. Р. А. Fisher. Phys. Rev. Lett., 62, 1415 (1989). https://doi.org/10.1103/PhysRevLett.62.1415
23. E. H. Brandt. Physica C, 195, 1 (1992). https://doi.org/10.1016/0921-4534(92)90068-N
24. D. S. Fisher, M. P. A. Fisher, D. A. Huse. Phys. Rev. В, 43, 130 (1991). https://doi.org/10.1103/PhysRevB.43.130
25. Н. В. Radousky. J. Mater. Res., 7, 1917 (1992). https://doi.org/10.1557/JMR.1992.1917
26. J. R. Thompson, Y. R. Sun, L. Civale et al. Phys. Rev. B, 47, 14440 (1993). https://doi.org/10.1103/PhysRevB.47.14440
27. A. Angadi, Z. H. Shen, A. D. Caplin et al. Supercond. Sci. Technol., 3, 165 (1990).
28. A. Houghton, R. A. Peloovits, A. Sudbo. Phys. Rev. B, 40, 6763 (1989). https://doi.org/10.1103/PhysRevB.40.6763
29. M. V. Feigel'man, V. M. Vinokur. Phys. Rev. B, 41, 8986 (1990). https://doi.org/10.1103/PhysRevB.41.8986
30. D. R. Nelson, В. І. Galperin. Phys. Rev. B, 19, 2457 (1979). https://doi.org/10.1103/PhysRevB.19.2457
31. Е. М. Chudnovsky. Phys. Rev. B, 40, 11355 (1989). https://doi.org/10.1103/PhysRevB.40.11355
32. M. Tachiki, S. Takahashi. Sol. State Commun, 72, 1083 (1989). https://doi.org/10.1016/0038-1098(89)90251-2
33. W. K. Kwok, J. Fendrich, S. Flesher et al. Physica В, 197, 579 (1994). https://doi.org/10.1016/0921-4526(94)90259-3
34. V. M. Vinokur, V. B. Geshkenbein, A. I. Larkin, M. V. Feigel'man. Sov. Phys. JETP 73(3), 610 (1991).
35. М. О. Marchetti, D. R. Nelson. Physica C, 174, 40 (1991). https://doi.org/10.1016/0921-4534(91)90419-Y
36. A. Pruymboom, P. H. Kes, E. van der Drift et al. Phys. Rev. Lett., 60, 1430 (1988).
37. A. V. Bondarenko, M. A. Obolenskii, R. V. Vovk et al. In Proceedings of 7th Int. Workshop on Critical Currents in Superconductors, Alpbach, Austria, (1995), p.193. https://doi.org/10.1103/PhysRevLett.60.1430
38. T.K. Wortington, M.P.A. Fisher, D.A. Huse et al. Phys. Rev. B, 46, 11854 (1992). https://doi.org/10.1103/PhysRevB.46.11854
39. G. Blatter, J. Rhyner, V. M. Vinokur. Phys. Rev. B, 43, 7026 (1991). https://doi.org/10.1103/PhysRevB.43.7026
40. A. A. Zhukov, I. V. Gladyshev, S. N. Gordeev et al. Superconductivity: Physics, Chemistry, Technology, 4, 2333 (1991) (in Russian).
41. M. C. Marchetti, D. R. Nelson. Phys. Rev. B, 42, 9938 (1990). https://doi.org/10.1103/PhysRevB.42.9938
42. Y. Yeng, C. Beduz, Z. Yi, R. G. Scurlook. Physica C, 199. 23 (1992). https://doi.org/10.1016/0921-4534(92)90535-K
43. M.P. Maley, J.O. Willis, H. Leseure, M.E. McHenry. Phys. Rev. B, 42, 2639 (1990). https://doi.org/10.1103/PhysRevB.42.2639
44. I. Isaac, J. Jung, M. Murakami et al. Phys. Rev. B, 51, 11806 (1995). https://doi.org/10.1103/PhysRevB.51.11806
45. Y. R. Sun, J. R. Thompson, Y. J. Chen et al. Phys. Rev. B, 47, 14481 (1993). https://doi.org/10.1103/PhysRevB.47.14481
46. H. Kupfer, S.N. Gordeev, W. Jang et al. Phys. Rev. B, 50, 7016 (1994). https://doi.org/10.1103/PhysRevB.50.7016
47. L. Krusin-Elbaum, L. Civale, V. M. Vinokur, F. Holtzberg. Phys. Rev. Lett., 69, 2280 (1992). DOI: https://doi.org/10.1103/PhysRevLett.69.2280
48. К. I. Kugel, T. Matsushida, E. Z. Meilikhov, A. L. Rakhmanov. Physica C, 228, 373 (1994). https://doi.org/10.1016/0921-4534(94)90428-6
49. G. Ravikumar, P. K. Mishra, V. C. Sahni, S. S. Banerjee, A. K. Grover, S. Ramakrishnan, P. L. Gammel, D. J. Bishop, E. Bucher, M. J. Higgins, S. Bhattacharya. Phys. Rev. B, 61, 12490 (2000). https://doi.org/10.1103/PhysRevB.61.12490
50. A.I. Larkin, Yu.N. Ovchinnikov. J. Low Тemp. Phys., 34, 409 (1979). 10.1007/BF00117160
51. A. V. Bondarenko, A. A. Prodan, Yu. T. Petrusenko, V. N. Borisenko, F. Dworschak, U. Dedek. Phys. Rev. B, 64, 092513 (2001). https://doi.org/10.1103/PhysRevB.64.092513
52. G. Blatter, M. V. Feigel’man, V. Geshkenbein, A. I. Larkin, V. M. Vinokur. Rev. Mod. Phys., 66, 1125 (1994). https://doi.org/10.1103/RevModPhys.66.1125
53. A.E. Koshelev, V.M. Vinokur. Phys. Rev. Lett., 73, 3580 (1994). 10.1103/PhysRevLett.73.3580
54. D. Ertaş, D. R. Nelson. Physica C, 272, 79 (1996). https://doi.org/10.1016/S0921-4534(96)00563-1
55. Ophir M. Auslaender, Lan Luan, Eric W. J. Straver, Jennifer E. Hoffman, Nicholas C. Koshnick, Eli Zeldov, Douglas A. Bonn, Ruixing Liang, Walter N. Hardy, Kathryn A. Moler. Nature Physics, 5, 35 (2009). https://doi.org/10.1038/nphys1127
56. M. Zehetmayer, M. Eisterer, J. Jun, S. M. Kazakov, J. Karpinski, B. Birajdar, O. Eibl, H. W. Weber. Phys. Rev. B, 69, 054510 (2004). https://doi.org/10.1103/PhysRevB.69.054510
57. A.J.J. Van Dalen, M.R. Koblischka, R. Griessen, M. Jirsa, G. Ravi Kumar. Physica C, 250. 265 (1995). https://doi.org/10.1016/0921-4534(95)00363-0
58. D. Giller, B. Kalisky, I. Shapiro, B. Ya. Shapiro, A. Shaulov, Y. Yeshurun. Physica C, 388-389, 731 (2003). https://doi.org/10.1016/S0921-4534(02)02531-5
59. M. Werner, F. M. Sauerzopf, H.W. Weber, A. Wisniewski. Phys. Rev. B 61, 14795 (2000). https://doi.org/10.1103/PhysRevB.61.14795
60. A. D. Hernґandez, D. Domґinguez. Phys. Rev. Lett., 92, 117002 (2004). 10.1103/PhysRevLett.92.117002
61. L. Miu, T. Noji, Y. Koike, E. Cimpoiasu, T. Stein, C. C. Almasan. Phys. Rev. B, 62, 15172 (2000). https://doi.org/10.1103/PhysRevB.62.15172
62. C. P. Bean, J. D. Livingston. Phys. Rev. Lett., 12, 14 (1964). https://doi.org/10.1103/PhysRevLett.12.14
63. C. P. Bean. Phys. Rev. Lett., 8, 250 (1962). https://doi.org/10.1103/PhysRevLett.8.250
64. H.P. Wiesinger, F.M. Sauerzopf, H.W. Weber. Physica C, 203, 121 (1992). https://doi.org/10.1016/0921-4534(92)90517-G
65. U. Divakar, A.J. Drew, S.L. Lee, R. Gilardi, J. Mesot, F.Y. Ogrin, D. Charalambous, E.M. Forgan, G.I. Menon, M. Oda, C.D. Dewhurst, C Baines. Phys. Rev. Lett., 92, 237004 (2004). 10.1103/PhysRevLett.92.237004
66. G. K. Perkins, L. F. Cohen, A. A. Zhukov, A. D. Caplin. Phys. Rev. B, 55, 8110 (1997). https://doi.org/10.1103/PhysRevB.55.8110
67. S. Kokkaliaris, A. A. Zhukov, P. A. J de Groot, R. Gagnon, L. Taillefer, T. Wolf. Phys. Rev. B, 61, 3655 (2000). https://doi.org/10.1103/PhysRevB.61.3655
68. L. Burlachkov, V. Ginodman, I. Shilmak. Phys. Rev. B, 59, 8917 (1999). https://doi.org/v10.1103/PhysRevB.59.8917
69. L. Burlachkov, A. E. Koshelev, V.M. Vinokur. Phys. Rev. B, 54, 6750 (1996). https://doi.org/10.1103/PhysRevB.54.6750
70. L. Zhang, Q. Qiao, X. B. Xu, Y. L. Jiao, L. Xiao, S. Y. Ding, X. L. Wang. Physica C, 445-448, 236 (2006). https://doi.org/10.1016/j.physc.2006.04.008
Published
2025-05-28
How to Cite
Vovk, R. V., Vragov, O. Y., Inozemtsev, M. M., Kovrygyn, V. O., Komisarov, A. O., Korobkov, M. V., Korshak, V. F., Pashchenko, L. O., Hadzhai, G. Y., Chepurin, O. G., & Yarchuk, D. F. (2025). CRYSTAL STRUCTURE, DEFECTS, PINNING AND MAGNETIC FLUX DYNAMICS IN HTNP COMPOUNDS OF THE 1-2-3 SYSTEM (brief review). Journal of V. N. Karazin Kharkiv National University. Series Physics, (42), 7-21. https://doi.org/10.26565/2222-5617-2025-42-01

Most read articles by the same author(s)