Biological effects of schisandra chinensis medicines and prospects of their use in clinical medicine (literature review)

  • Yatsyk Yelyzaveta V. N. Karazin Kharkiv National University School of Medicine
  • Oleksandr Kozlov V. N. Karazin Kharkiv National University School of Medicine https://orcid.org/0000-0003-0320-1505
  • Svitlana Tkachenko V. N. Karazin Kharkiv National University School of Medicine https://orcid.org/0000-0001-7681-8464
Keywords: adaptogens, biological effects, cognitive functions, nutraceuticals, schisandra chinensis

Abstract

Introduction. The constant action of harmful factors, increased levels of neuropsychological stress and stress-associated decline in immunity increase scientific interest for studying the therapeutic properties of phytoadaptogens. In particular, the study of preventive use of drugs based on the adaptogen of oriental traditional medicine – schisandra (Schisandra chinensis) is now gaining relevance. The aim of the study. To analyze modern scientific sources of literature on the main characteristics and use of Schisandra chinensis, to identify the dominant biological effects and prospects for the use of adaptogen in the prevention and treatment of disorders of the nervous system. Materials and methods. The analyzed literature was searched using the following electronic databases: PubMed, Medline, ResearchGate and Google Scholar. Results. This review demonstrates a wide range of effects of S. chinensis chemical components on the activity of various human organ systems. Based on the available data, it was found that the antitumor, antioxidant and anti-inflammatory pharmacological effects of chinese magnolia-vine have been actively studied. Special attention was paid to the psychophysiological properties of adaptogens, in particular S. chinensis. Experimental use of S. chinensis in mice with neurodegenerative disorders has shown an improvement in animal mental activity. Clinical trials of adaptogenic drugs with a high content of chinese magnolia-vine components have shown improved cognitive activity, speed and accuracy of movement in tired people, although in the literature there are cases when the consumption of mixtures did not show the desired results. Conclusions. The analysis of literature data confirms the prospects of using S. chinensis as a mean of prophylactic treatment in clinical medicine. However, despite the large amount of scientific research on the adaptogenic potential of chinese magnolia, the results of S. chinensis influence on human cognitive abilities are contradictory and need further study in the future.

Downloads

Download data is not yet available.

Author Biographies

Yatsyk Yelyzaveta, V. N. Karazin Kharkiv National University School of Medicine

3rd year student of the school of medicine, V. N. Karazin Kharkiv National University, School of Medicine, 6, Svobody Square, Kharkiv, Ukraine, 61022

Oleksandr Kozlov, V. N. Karazin Kharkiv National University School of Medicine

PhD, associate professor, Department of infectious diseases and clinical immunology, V. N. Karazin Kharkiv National University, School of Medicine, 6, Svobody Square, Kharkiv, Ukraine, 61022

Svitlana Tkachenko, V. N. Karazin Kharkiv National University School of Medicine

PhD, associate professor, Department of infectious diseases and clinical immunology, V. N. Karazin Kharkiv National University, School of Medicine, 6, Svobody Square, Kharkiv, Ukraine, 61022

References

Huang T, Shen P, Shen Y. Preparative separation and purification of deoxyschisandrin and gamma-schisandrin from Schisandra chinensis (Turcz.) Baill by high-speed counter-current chromatography. J Chromatogr A. 2005; 1066 (1–2): 239–242. DOI: https://doi.org/10.1016/j.chroma.2005.01.025

Slanina J, Táborská E, Lojková L. Lignans in the seeds and fruits of Schisandra chinensis cultured in Europe. Planta Med. 1997; 63 (3): 277–280. DOI: https://doi.org/10.1055/s-2006-957676

World Health Organization. Fructus Schisandrae. In: WHO Monographs on Selected Medicinal Plants, Vol 3. Geneva, Switzerland: World Health Organization. 2007; 296–313.

WHOCC – ATC/DDD Index [Internet]. www.whocc.no. [cited 2021 Nov 21]. Available from: https://www.whocc.no/atc_ddd_index/?code=A13

Nowak A, Zakłos-Szyda M, Błasiak J, Nowak A, Zhang Z, Zhang B. Potential of Schisandra chinensis (Turcz.) Baill. in Human Health and Nutrition: A Review of Current Knowledge and Therapeutic Perspectives. Nutrients. 2019; 11 (2): 333. DOI: https://doi.org/ 10.3390/nu11020333

Panossian A, Wikman G. Pharmacology of Schisandra chinensis Bail. : an overview of Russian

research and uses in medicine. J Ethnopharmacol. 2008; 118 (2): 183–212. DOI: https://doi.org/10.1016/j.jep.2008.04.020

Yang K, Qiu J, Huang Z, et al. A comprehensive review of ethnopharmacology, phytochemistry, pharmacology, and pharmacokinetics of Schisandra chinensis (Turcz.) Baill. and Schisandra sphenanthera Rehd. et Wils [published online ahead of print, 2021 Oct 19]. J Ethnopharmacol. 2021; 284: 114759. DOI: https://doi.org/10.1016/j.jep.2021.114759

Szopa A, Ekiert R, Ekiert H. Current knowledge of Schisandra chinensis (Turcz.) Baill. (Chinese

magnolia vine) as a medicinal plant species: a review on the bioactive components, pharmacological properties, analytical and biotechnological studies. Phytochem Rev. 2017; 16 (2): 195–218. DOI: https://doi.org/10.1007/s11101-016-9470-4

Nguyen TN, Lee YG, Kim HG, Yoon D, Jeong JT, Lee DY et al. New dibenzocyclooctadiene lignan from Schisandra chinensis (Turcz.) Baill. fruits. Applied Biological Chemistry. 2021 Dec; 64 (1). 46. DOI: https://doi.org/10.1186/s13765-021-00618-1

Yang BY, Chen ZL, Liu Y, Guo JT, Kuang HX. New lignan from the rattan stems of Schisandra chinensis. Nat Prod Res. 2019; 33 (3): 340–346. DOI: https://doi.org/10.1080/14786419.2018.1452000

Wang X, Yu J, Li W, et al. Characteristics and Antioxidant Activity of Lignans in Schisandra chinensis and Schisandra sphenanthera from Different Locations. ChemBiodivers.2018; 15 (6): e1800030. DOI: https://doi.org/10.1002/cbdv.201800030

Zhou Y, Men L, Sun Y, Wei M, Fan X. Pharmacodynamic effects and molecular mechanisms of lignans from Schisandra chinensis Turcz. (Baill.), a current review. EurJPharmacol.2021; 892: 173796. DOI: https://doi.org/10.1016/j.ejphar.2020.173796

Li Z, He X, Liu F, Wang J, Feng J. A review of polysaccharides from Schisandra chinensis and Schisandra sphenanthera: Properties, functions and applications. Carbohydr Polym. 2018; 184: 178–190. DOI: https://doi.org/10.1016/j.carbpol.2017.12.058

Xiao WL, Li RT, Huang SX, Pu JX, Sun HD. Triterpenoids from the Schisandraceae family. Nat Prod Rep. 2008; 25 (5): 871–891. DOI: https://doi.org/10.1039/b719905h

Li B, Zhu L, Wu T, et al. Effects of triterpenoid from Schisandra chinensis on oxidative stress in

alcohol-induced liver injury in rats. Cell Biochem Biophys. 2015; 71 (2): 803–811. DOI: https://doi.org/10.1007/s12013-014-0266-0

Kopustinskiene DM, Bernatoniene J. Antioxidant Effects of Schisandra chinensis Fruits and Their Active Constituents. Antioxidants (Basel). 2021;10(4):620. Published 2021 Apr 18. DOI: https://doi.org/10.3390/antiox10040620

Hu G, Qi Z, Wang A, Jia J. Effects of Deacidification on Composition of Schisandra chinensis Ethanolic Extract and Studies on Acute Toxicity in Mice. Molecules. 2020;25(24):6038. Published 2020 Dec 21. DOI: https://doi.org/10.3390/molecules25246038

Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. OJ L 404, 30 December 2006; 9–25. DOI: http://data.europa.eu/eli/reg/2006/1924/oj

Sowndhararajan K, Kim TH, Kim H, Kim S. Evaluation of proximate composition,bioactive lignansand volatile composition of Schisandra chinensis fruitsfrom Inje and Mungyeong, Republic of Korea. J App Pharm Sci, 2016; 6 (11): 001–008. DOI: https://doi.org/10.7324/JAPS.2016.601101

Shao S, Wang MX, Zhang HY, et al. Antifatigue Activity of Glycoprotein from Schisandra chinensis Functions by Reducing Oxidative Stress. Evid Based Complement Alternat Med. 2020; 2020 : 4231340. DOI: https://doi.org/10.1155/2020/4231340

Guo LY, Hung TM, Bae KH, et al. Anti-inflammatory effects of schisandrin isolated from the fruit of Schisandra chinensis Baill. Eur J Pharmacol. 2008; 591 (1–3): 293–299. DOI: https://doi.org/10.1016/j.ejphar.2008.06.074

Yasukawa K, Ikeya Y, Mitsuhashi H, et al. Gomisin A inhibits tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Oncology. 1992; 49 (1): 68–71. DOI: https://doi.org/10.1159/000227014

Cui L, Zhu W, Yang Z, et al. Evidence of anti-inflammatory activity of Schizandrin A in animal models of acute inflammation. Naunyn Schmiedebergs Arch Pharmacol. 2020; 393 (11): 2221–2229. DOI: https://doi.org/10.1007/s00210-020-01837-x

Xu D, Liu J, Ma H, et al. Schisandrin A protects against lipopolysaccharide-induced mastitis through activating Nrf2 signaling pathway and inducing autophagy. Int Immunopharmacol. 2020; 78: 105983. DOI: https://doi.org/10.1016/j.intimp.2019.105983

Chen X, Huang Y, Feng J, Jiang XF, Xiao WF, Chen XX. Antioxidant and anti-inflammatory effects of Schisandra and Paeonia extracts in the treatment of asthma. Exp Ther Med. 2014; 8 (5): 1479–1483. DOI: https://doi.org/10.3892/etm.2014.1948

Kang YH, Shin HM. Inhibitory effects of Schizandra chinensis extract on atopic dermatitis in NC/Nga mice. Immunopharmacol Immunotoxicol. 2012; 34 (2): 292–298.

DOI: https://doi.org/10.3109/08923973.2011.602689

Li YZ, Ren S, Yan XT, et al. Improvement of Cisplatin-induced renal dysfunction by Schisandra chinensis stems via anti-inflammation and anti-apoptosis effects. J Ethnopharmacol. 2018; 217: 228–237. DOI: https://doi.org/10.1016/j.jep.2018.01.033

Han NR, Moon PD, Kim NR, Kim HY, Jeong HJ, Kim HM. Schisandra chinensis and Its

Main Constituent Schizandrin Attenuate Allergic Reactions by Down-Regulating Caspase-1

in Ovalbumin-Sensitized Mice. Am J Chin Med. 2017; 45 (1): 159–172. DOI: https://doi.org/10.1142/S0192415X17500112

Kim KY, Ku SK, Lee KW, Song CH, An WG. Muscle-protective effects of Schisandrae Fructus extracts in old mice after chronic forced exercise. J Ethnopharmacol. 2018; 212: 175–187. DOI: https://doi.org/10.1016/j.jep.2017.10.022

Ran J, Ma C, Xu K, et al. Schisandrin B ameliorated chondrocytes inflammation and osteoarthritis via suppression of NF-κB and MAPK signal pathways. Drug Des Devel Ther. 2018; 12: 1195–1204. DOI: https://doi.org/10.2147/DDDT.S162014

Guo M, Lu Y, Yang J, Zhao X, Lu Y. Inhibitory effects of Schisandra chinensis extract on acne-related inflammation and UVB-induced photoageing. Pharm Biol. 2016; 54 (12): 2987–2994. DOI: https://doi.org/10.1080/13880209.2016.1199041

Guo M, An F, Wei X, Hong M, Lu Y. Comparative Effects of Schisandrin A, B, and C on Acne-Related Inflammation. Inflammation. 2017; 40 (6): 2163–2172. DOI: https://doi.org/10.1007/s10753-017-0656-8

Chasovskikh N.Yu. The role of protein kinases JNK and p38 in the regulation of apoptosamononuclear leukocytes in blood under oxidative stress. Bull. Sib. Med. (Russ.). 2008; 7 (3): 38–42. DOI: https://doi.org/10.20538/1682-0363-2008-3-38-43

Zhong S, Nie YC, Gan ZY, et al. Effects of Schisandra chinensis extracts on cough and pulmonary inflammation in a cough hypersensitivity guinea pig model induced by cigarette smoke exposure. J Ethnopharmacol. 2015; 165: 73–82. DOI: https://doi.org/10.1016/j.jep.2015.02.009

Ma Z, Xu G, Shen Y, Hu S, Lin X, Zhou J, Zhao W, Liu J, Wang J, Guo J. Schisandrin B-mediated TH17 cell differentiation attenuates bowel inflammation. Pharmacol Res. 2021 Apr; 166: 105459. DOI: https://doi.org/10.1016/j.phrs.2021.105459

Kiecolt-Glaser JK, Derry HM, Fagundes CP. Inflammation: depression fans the flames and feasts on the heat. Am J Psychiatry. 2015; 172 (11): 1075–1091. DOI: https://doi.org/10.1176/appi.ajp.2015.15020152

Yan T, Wang N, Liu B, et al. Schisandra chinensis ameliorates depressive-like behaviors by regulating microbiota-gut-brain axis via its anti-inflammation activity. Phytother Res. 2021; 35 (1): 289–296. DOI: https://doi.org/10.1002/ptr.6799

Xu M, Zhang X, Ren F, et al. Essential oil of Schisandra chinensis ameliorates cognitive decline

in mice by alleviating inflammation. Food Funct. 2019; 10 (9): 5827–5842. DOI: https://doi.org/10.1039/c9fo00058e

Zhou F, Wang M, Ju J, et al. Schizandrin A protects against cerebral ischemia-reperfusion injury by suppressing inflammation and oxidative stress and regulating the AMPK/Nrf2 pathway regulation. Am J Transl Res. 2019; 11 (1): 199–209. DOI: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC635730

Wan CK, Tse AK, Yu ZL, Zhu GY, Wang H, Fong DW. Inhibition of cytochrome P450 3A4 activity by schisandrol A and gomisin A isolated from Fructus Schisandrae chinensis. Phytomedicine. 2010; 17 (8–9): 702–705. DOI: https://doi.org/10.1016/j.phymed.2009.12.005

Kang JS, Han MH, Kim GY, et al. Nrf2-mediated HO-1 induction contributes to antioxidant capacity of a Schisandrae Fructus ethanol extract in C2C12 myoblasts. Nutrients. 2014; 6 (12): 5667–5678. DOI: https://doi.org/10.3390/nu6125667

Li XJ, Zhao BL, Liu GT, Xin WJ. Scavenging effects on active oxygen radicals by schizandrins

with different structures and configurations. Free Radic Biol Med. 1990; 9 (2): 99–104. DOI: https://doi.org/10.1016/0891-5849(90)90111-U

Yan T, Shang L, Wang M, et al. Lignans from Schisandra chinensis ameliorate cognition deficits and attenuate brain oxidative damage induced by D-galactose in rats. Metab Brain Dis. 2016; 31 (3): 653–661. DOI: https://doi.org/10.1007/s11011-016-9804-3

Song X, Wang T, Guo L, et al. In Vitro and In Vivo Anti-AChE and Antioxidative Effects of Schisandra chinensis Extract: A Potential Candidate for Alzheimer’s Disease. Evid Based Complement Alternat Med. 2020; 2020: 2804849. DOI: https://doi.org/10.1155/2020/2804849

Lu H, Liu GT. Anti-oxidant activity of dibenzocyclooctene lignans isolated from Schisandraceae. Planta Med. 1992; 58 (4): 311–313. DOI: https://doi.org/10.1055/s-2006-961473

Thandavarayan RA, Giridharan VV, Arumugam S, et al. Schisandrin B prevents doxorubicin induced cardiac dysfunction by modulation of DNA damage, oxidative stress and inflammation through

inhibition of MAPK/p53 signaling. PLoS One. 2015; 10 (3): e0119214. DOI: https://doi.org/10.1371/journal.pone.0119214

Lai Q, Wei J, Mahmoodurrahman M, et al. Pharmacokinetic and nephroprotective benefits of using Schisandra chinensis extracts in a cyclosporine A-based immune-suppressive regime. Drug Des Devel Ther. 2015; 9: 4997–5018. DOI: https://doi.org/10.2147/DDDT.S89876

Wan MLY, Turner PC, Co VA, Wang MF, Amiri KMA, El-Nezami H. Schisandrin A protects intestinal epithelial cells from deoxynivalenol-induced cytotoxicity, oxidative damage and inflammation. Sci Rep. 2019; 9 (1): 19173. DOI: https://doi.org/10.1038/s41598-019-55821-4

Takanche JS, Kim JE, Han SH, Yi HK. Effect of gomisin A on osteoblast differentiation in high glucose-mediated oxidative stress. Phytomedicine. 2020;66:153107. DOI: https://doi.org/10.1016/j.phymed.2019.153107

Gu M, Song H, Li Y, et al. Extract of Schisandra chinensis fruit protects against metabolic dysfunction in high-fat diet induced obese mice via FXR activation. Phytother Res. 2020; 34 (11): 3063–3077. DOI: https://doi.org/10.1002/ptr.6743

Bao TT et al. A comparison of the pharmacologic actions of 7 constituents isolated from Fructus Schizandrae. Chinese Medical Journal. 1980; 93: 41–47. DOI: https://doi.org/10.1002/ptr.6743

Jo SH, Ha KS, Moon KS, Lee OH, Jang HD, Kwon YI. In vitro and in vivo anti-hyperglycemic effects of Omija (Schizandra chinensis) fruit. Int J Mol Sci. 2011; 12 (2): 1359–1370. DOI: https://doi.org/10.3390/ijms12021359

Qu Y, Chan JY, Wong CW, et al. Antidiabetic Effect of Schisandrae Chinensis Fructus Involves

Inhibition of the Sodium Glucose Cotransporter. Drug Dev Res. 2015; 76 (1): 1–8. DOI: https://doi.org/10.1002/ddr.21233

Jin D, Zhao T, Feng WW, et al. Schisandra polysaccharide increased glucose consumption by

up-regulating the expression of GLUT-4. Int J Biol Macromol. 2016 ;87: 555–562. DOI: https://doi.org/10.1016/j.ijbiomac.2016.03.028

Ohtaki Y, Nomura M, Hida T, et al. Inhibition by gomisin A, a lignan compound, of hepatocarcinogenesis by 3'-methyl-4-dimethylaminoazobenzene in rats. Biol Pharm Bull. 1994; 17 (6): 808–814. DOI: https://doi.org/10.1248/bpb.17.808

Han YH, Mun JG, Jeon HD, Park J, Kee JY, Hong SH. Gomisin A ameliorates metastatic melanoma by inhibiting AMPK and ERK/JNK-mediated cell survival and metastatic phenotypes. Phytomedicine. 2020; 68: 153147. DOI: https://doi.org/10.1016/j.phymed.2019.153147

Zhao T, Feng Y, Li J, et al. Schisandra polysaccharide evokes immunomodulatory activity through TLR 4-mediated activation of macrophages. Int J Biol Macromol. 2014; 65: 33–40. DOI: https://doi.org/10.1016/j.ijbiomac.2014.01.018

Qu HM, Liu SJ, Zhang CY. Antitumor and antiangiogenic activity of Schisandra chinensis polysaccharide in a renal cell carcinoma model. Int J Biol Macromol. 2014 ;66: 52–56. DOI: https://doi.org/10.1016/j.ijbiomac.2014.02.025

Jeong M, Kim HM, Kim HJ, Choi JH, Jang DS. Kudsuphilactone B, a nortriterpenoid isolated from Schisandra chinensis fruit, induces caspase-dependent apoptosis in human ovarian cancer A2780 cells. Arch Pharm Res. 2017; 40 (4): 500–508. DOI: https://doi.org/10.1007/s12272-017-0902-5

Wang Z, Yu K, Hu Y, et al. Schisantherin A induces cell apoptosis through ROS/JNK signaling pathway in human gastric cancer cells. Biochem Pharmacol. 2020; 173: 113673. DOI: https://doi.org/10.1016/j.bcp.2019.113673

Yan C, Gao L, Qiu X, Deng C. Schisandrin B synergizes docetaxel-induced restriction of growth and invasion of cervical cancer cells in vitro and in vivo. Ann Transl Med. 2020; 8 (18): 1157. DOI: https://doi.org/10.21037/atm-20-6109

Xu X, Rajamanicham V, Xu S, et al. Schisandrin A inhibits triple negative breast cancer cells by regulating Wnt/ER stress signaling pathway. Biomed Pharmacother. 2019; 115: 108922. DOI: https://doi.org/10.1016/j.biopha.2019.108922

Yang Y, Hao E, Pan X, et al. Gomisin M2 from Baizuan suppresses breast cancer stem cell proliferation in a zebrafish xenograft model. Aging (Albany NY). 2019; 11 (19): 8347–8361. DOI: https://doi.org/10.18632/aging.102323

Li R, Yang W. Gomisin J inhibits the glioma progression by inducing apoptosis and reducing

HKII-regulated glycolysis. Biochem Biophys Res Commun. 2020; 529 (1): 15–22. DOI: https://doi.org/10.1016/j.bbrc.2020.05.109

Xu L, Grandi N, Del Vecchio C, et al. From the traditional Chinese medicine plant Schisandra chinensis new scaffolds effective on HIV-1 reverse transcriptase resistant to non-nucleoside inhibitors. J Microbiol. 2015; 53 (4) :288–293. DOI: https://doi.org/10.1007/s12275-015-4652-0

Xue Y, Li X, Du X, et al. Isolation and anti-hepatitis B virus activity of dibenzocyclooctadiene lignans from the fruits of Schisandra chinensis. Phytochemistry. 2015; 116: 253–261. DOI: https://doi.org/10.1016/j.phytochem.2015.03.009

Reiche EM, Nunes SO, Morimoto HK. Stress, depression, the immune system, and cancer. Lancet Oncol. 2004; 5 (10): 617–625. DOI: https://doi.org/10.1016/S1470-2045(04)01597-9

Duque A, Vinader-Caerols C, Monleón S. Effects of social stress and clomipramine on emotional memory in mice. Acta Neurobiol Exp (Wars). 2016; 76 (3): 225–33. DOI: https://doi.org/10.21307/ane-2017-022

Chan SJ, Wong WS, Wong PT, Bian JS. Neuroprotective effects of andrographolide in a rat model of permanent cerebral ischaemia. Br J Pharmacol. 2010; 161 (3): 668–679. DOI: https://doi.org/10.1111/j.1476-5381.2010.00906.x

Mattioli L, Perfumi M. Rhodiola rosea L. extract reduces stress- and CRF-induced anorexia in rats. J Psychopharmacol. 2007;21(7):742-750. DOI: https://doi.org/10.1177/0269881106074064

Petkov VD, Yonkov D, Mosharoff A, et al. Effects of alcohol aqueous extract from Rhodiola rosea L. roots on learning and memory. Acta Physiol Pharmacol Bulg. 1986; 12 (1): 3–16. DOI: https://pubmed.ncbi.nlm.nih.gov/3751623/

Olsson EM, von Schéele B, Panossian AG. A randomised, double-blind, placebo-controlled, parallel-group study of the standardised extract shr-5 of the roots of Rhodiola rosea in the treatment of subjects with stress-related fatigue. Planta Med. 2009;75(2):105-112. DOI: https://doi.org/10.1055/s-0028-1088346

Spasov AA, Wikman GK, Mandrikov VB, Mironova IA, Neumoin VV. A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine. 2000; 7 (2): 85–89. DOI: https://doi.org/10.1016/S0944-7113(00)80078-1

Shevtsov VA, Zholus BI, Shervarly VI, et al. A randomized trial of two different doses of a SHR-5 Rhodiola rosea extract versus placebo and control of capacity for mental work. Phytomedicine. 2003; 10 (2–3): 95–105. DOI: https://doi.org/10.1078/094471103321659780

Baek JH, Heo JY, Fava M, et al. Effect of Korean Red Ginseng in individuals exposed to high stress levels: a 6-week, double-blind, randomized, placebo-controlled trial. J Ginseng Res. 2019; 43 (3): 402–407. DOI: https://doi.org/10.1016/j.jgr.2018.03.001

Biswal BM, Sulaiman SA, Ismail HC, Zakaria H, Musa KI. Effect of Withania somnifera (Ashwagandha) on the development of chemotherapy-induced fatigue and quality of life in breast cancer patients. Integr Cancer Ther. 2013;12(4):312-322. DOI: https://doi.org/10.1177/1534735412464551

Simonova NV, Dorovskikh VA, Anokhina RA, Shtarberg MA, Brash NG, Budnik VV. Results of clinical study of nootropic and antioxidant activity of Leuzea carthamoides. Bulletin Physiology and Pathology of Respiration. 2019; 73: 62–68. DOI: https://doi.org/10.36604/1998-5029-2019-73-

Schaffler K, Wolf OT, Burkart M. No benefit adding eleutherococcus senticosus to stress management training in stress-related fatigue/weakness, impaired work or concentration, a randomized controlled study. Pharmacopsychiatry. 2013; 46 (5): 181–190. DOI: https://doi.org/10.1055/s-0033-1347178

Cicero AF, Derosa G, Brillante R, Bernardi R, Nascetti S, Gaddi A. Effects of Siberian ginseng (Eleutherococcus senticosus maxim.) on elderly quality of life: a randomized clinical trial. Arch Gerontol Geriatr Suppl. 2004; (9): 69–73. DOI: https://doi.org/10.1016/j.archger.2004.04.012

Whyte AR, Cheng N, Fromentin E, Williams CM. A Randomized, Double-Blinded, Placebo-Controlled Study to Compare the Safety and Efficacy of Low Dose Enhanced Wild Blueberry Powder and Wild Blueberry Extract (ThinkBlue™) in Maintenance of Episodic and Working Memory in Older Adults. Nutrients. 2018; 10 (6): 660. DOI: https://doi.org/10.3390/nu10060660

Kennedy DO, Jackson PA, Forster J, et al. Acute effects of a wild green-oat (Avena sativa) extract on cognitive function in middle-aged adults: A double-blind, placebo-controlled, within-subjects trial. Nutr Neurosci. 2017; 20 (2): 135–151. DOI: https://doi.org/10.1080/1028415X.2015.1101304

Liu Y , Liu Z , Wei M , et al. Pharmacodynamic and urinary metabolomics studies on the mechanism of Schisandra polysaccharide in the treatment of Alzheimer’s disease. Food Funct. 2019; 10 (1): 432–447. DOI: https://doi.org/10.1039/c8fo02067a

Hu D, Li C, Han N, et al. Deoxyschizandrin isolated from the fruits of Schisandra chinensis ameliorates Aβ₁₋₄₂-induced memory impairment in mice. Planta Med. 2012; 78 (12): 1332–1336. DOI: https://doi.org/10.1055/s-0032-1315019

Hu D, Cao Y, He R, et al. Schizandrin, an antioxidant lignan from Schisandra chinensis, ameliorates Aβ1-42-induced memory impairment in mice. Oxid Med Cell Longev. 2012; 2012: 721721. DOI: https://doi.org/10.1155/2012/721721

Xu M, Xiao F, Wang M, et al. Schisantherin B Improves the Pathological Manifestations of Mice Caused by Behavior Desperation in Different Ages-Depression with Cognitive Impairment. Biomol Ther (Seoul). 2019; 27 (2): 160–167. DOI: https://doi.org/10.4062/biomolther.2018.074

Aslanyan G, Amroyan E, Gabrielyan E, Nylander M, Wikman G, Panossian A. Double-blind, placebo-controlled, randomised study of single dose effects of ADAPT-232 on cognitive functions. Phytomedicine. 2010; 17 (7): 494–499. DOI: https://doi.org/10.1016/j.phymed.2010.02.005

Iversen T, Fiirgaard KM, Schriver P, Rasmussen O, Andreasen F. The effect of NaO Li Su on memory functions and blood chemistry in elderly people. J Ethnopharmacol. 1997; 56 (2):1 09–116. DOI: https://doi.org/10.1016/S0378-8741(97)01513-4

Published
2022-04-14
How to Cite
Yelyzaveta, Y., Kozlov, O., & Tkachenko, S. (2022). Biological effects of schisandra chinensis medicines and prospects of their use in clinical medicine (literature review). The Journal of V. N. Karazin Kharkiv National University, Series "Medicine", (44). https://doi.org/10.26565/2313-6693-2022-44-10