Quantum, molecular and continuum modeling in nonlinear mechanics of viruses

Keywords: virus, mechanic, atomic force microcopy, stress, deformation, damage, healing, modeling, simulatio

Abstract

Introdution. Viruses are a large group of pathogens that have been identified to infect animals, plants, bacteria and even other viruses. The 2019 novel coronavirus SARS-CoV-2 remains a constant threat to the human population. Viruses are biological objects with nanometric dimensions (typically from a few tens to several hundreds of nanometers). They are considered as the biomolecular substances composed of genetic materials (RNA or DNA), protecting capsid proteins and sometimes also of envelopes. Objective. The goal of the present review is to help predict the response and even destructuration of viruses taking into account the influence of different environmental factors, such as, mechanical loads, thermal changes, electromagnetic field, chemical changes and receptor binding on the host membrane. These environmental factors have significant impact on the virus.

Materials and methods. The study of viruses and virus-like structures has been analyzed using models and methods of nonlinear mechanics. In this regard, quantum, molecular and continuum descriptions in virus mechanics have been considered. Application of single molecule manipulation techniques, such as, atomic force microcopy, optical tweezers and magnetic tweezers has been discussed for a determination of the mechanical properties of viruses. Particular attention has been given to continuum damage–healing mechanics of viruses, proteins and virus-like structures. Also, constitutive modeling of viruses at large strains is presented. Nonlinear elasticity, plastic deformation, creep behavior, environmentally induced swelling (or shrinkage) and piezoelectric response of viruses were taken into account. Integrating a constitutive framework into ABAQUS, ANSYS and in-house developed software has been discussed. Conclusion. Link between virus structure, environment, infectivity and virus mechanics may be useful to predict the response and destructuration of viruses taking into account the influence of different environmental factors. Computational analysis using such link may be helpful to give a clear understanding of how neutralizing antibodies and T cells interact with the 2019 novel coronavirus SARS-CoV-2.

Downloads

Download data is not yet available.

Author Biographies

Alexander Zolochevsky, Head of Laboratory, Research and Industrial Center «Polytech»

14, O. Yarosha st., Kharkiv, 61145

Sophia Parkhomenko, Center «Polytech»

14, O. Yarosha st., Kharkiv, 61145

Alexander Martynenko, V. N. Karazin Kharkiv National University School of Medicine

6, Svobody sq., Kharkiv, Ukraine, 61022

References

Martynenko OV, Zolochevsky OO, Allena R. Long term evolution of bone reconstruction with bone graft substitutes. The Journal of V. N. Karazin Kharkiv National University: Medicine. 2017; (33):107–18. https://periodicals.karazin.ua/medicine/article/view/9153

Zolochevsky OO, Martynenko OV. Biomechanical analysis of tension-compression asymmetry, anisotropy and heterogeneity of bone reconstruction in response to periprosthetic fracture repair. The Journal of V. N. Karazin Kharkiv National University: Medicine. 2019; (37): 19–32. DOI: https://doi.org/10.26565/2313-6693-2019-37-03

Zolochevsky A, Martynenko A. Neuromechanical characterization of brain damage in response to head impact and pathological changes. The Journal of V. N. Karazin Kharkiv National University: Medicine. 2020; (39): 5–25. DOI: https://doi.org/10.26565/2313-6693-2020-39-01

Czekanski A, Martynenko AV, Zozulya VV. Modeling of heart muscles. In: Altenbach H, Öchsner A, editors. Encyclopedia of Continuum Mechanics. Berlin: Springer; 2020: 1713–23. DOI: https://doi.org/10.1007/978-3-662-55771-6

Yuen KS, Ye ZW, Fung SY, Chan CP, Jin DY. SARS-CoV-2 and COVID-19: The most important research questions. Cell and Bioscience. 2020; 10: 40-1–5. DOI: https://doi.org/10.1186/s13578-020-00404-4

Schrödinger E. What is Life? The Physical Aspect of the Living Cell. Cambridge: Cambridge University Press; 1944. 194 p.

Hinkle LE. The concept of «stress» in the biological and social sciences. The International Journal of Psychiatry in Medicine. 1974; 5 (4): 335–57. DOI: https://doi.org/10.2190/91DK-NKAD-1XP0-Y4RG

Herrmann A, Sieben C. Single-virus force spectroscopy unravels molecular details of virus infection. Integrative Biology. 2015; 7 (6): 620–32. DOI: https://doi.org/10.1039/c5ib00041f

Lee SY, Lim JS, Harris MT. Synthesis and application of virus‐based hybrid nanomaterials. Biotechnology and Bioengineering. 2012; 109 (1): 16–30. DOI: https://doi.org/10.1002/bit.23328

Rosenthal KS. Introduction to virology. In: Green L H, Goldman E, editors. Practical Handbook of Microbiology. 4th ed. Boca Raton: CRC Press; 2021. p. 704–21. DOI: https://doi.org/10.1201/9781003099277

Kiss B, Mudra D, Török G, Mártonfalvi Z, Csík G, Herényi L, Kellermayer M. Single-particle virology. Biophysical Reviews. 2020; 12: 1141–54. DOI: https://doi.org/10.1007/s12551-020-00747-9

Synowiec A, Szczepański A, Barreto-Duran E, Lie LK, Pyrc K. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): A systemic infection. Clinical Microbiology Reviews. 2021; 34 (2):e00133-20-1–32. DOI: https://doi.org/10.1128/CMR.00133-20

Koontz D. The Eyes of Darkness. New York: Pocket Books; 1981. 128 p.

Roos WH. AFM nanoindentation of protein shells, expanding the approach beyond viruses. Seminars in Cell and Developmental Biology. 2018; 73: 145–52. DOI: https://doi.org/10.1016/j.semcdb.2017.07.044

Carrillo PJP, Medrano M, Valbuena A, Rodriguez-Huete A, Castellanos M, Perez R, Mateu MG. Amino acid side chains buried along intersubunit interfaces in a viral capsid preserve low mechanical

stiffness associated with virus infectivity. ACS Nano. 2017; 11 (2): 2194–208. DOI: https://doi.org/10.1021/acsnano.6b08549

Roos WH, Bruinsma R, Wuite GJL. Physical virology. Nature Physics. 2010; 6 (10): 733–43. DOI: https://doi.org/10.1038/nphys1797

Gibbons MM, Klug WS. Nonlinear finite-element analysis of nanoindentation of viral capsids. Physical Review E. 2007; 75 (3): 031901-1–11. DOI: https://doi.org/10.1103/PhysRevE.75.031901

Zolochevsky AA. Allowance for differences in tension and compression for materials in the creep problems of shells. Dynamics and Strength of Machines. 1980; (32): 8–13.

Zolochevsky AA. Creep of thin shells for materials with different behavior in tension and compression [PhD thesis]. Kharkiv: Institute of Mechanical Engineering Problems of National Academy of Sciences of Ukraine; 1982. 198 p.

Zolochevskii AA. Method of calculating the strength of mine pipes formed from materials that behave differently under tension and compression. Strength of Materials. (1990); 22 (3): 422–8. DOI: https://doi.org/10.1007/BF00768204

Altenbach H, Zolochevsky A. Kriechen dünner Schalen aus anisotropen Werkstoffen mit unterschiedlichem Zug-Druck-Verhalten. Forschung im Ingenieurwesen. 1991; 57 (6): 172–9. DOI: https://doi.org/10.1007/BF02575157

Zolochevsky A, Sklepus S, Galishin A, Kühhorn A, Kober M. A comparison between the 3D and the Kirchhoff-Love solutions for cylinders under creep-damage conditions. Technische Mechanik. 2014; 34 (2): 104–13.

Naumenko K. On the use of the first order shear deformation models of beams, plates and shells in creep lifetime estimations. Technische Mechanik. 2000; 20 (3): 215–26.

Zolochevsky A, Galishin A, Kühhorn A, Springmann M. Transversal shear effect in moderately thick shells from materials with characteristics dependent on the kind of stress state under creep-damage conditions: Theoretical framework. Technische Mechanik. 2009; 29 (1): 38–47.

Galishin A, Zolochevsky A, Kühhorn A, Springmann M. Transversal shear effect in moderately thick shells from materials with characteristics dependent on the kind of stress state under creep-damage conditions: Numerical modeling. Technische Mechanik. 2009; 29 (1): 48–59.

Balandin AA, Fonoberov VA. Vibrational modes of nano-template viruses. Journal of Biomedical Nanotechnology. 2005; 1 (1): 90–5. DOI: https://doi.org/10.1166/jbn.2005.005

Zolochevsky AA, Sklepus AN, Sklepus SN. Nonlinear Solid Mechanics. Kharkiv: Garant; 2011. 719 p.

Zolochevsky A, Galishin A, Sklepus S, Parkhomenko L, Gnitko V, Kühhorn A, Leyens C. Benchmark creep tests for thermal barrier coatings. Journal of the National Technical University «Kharkiv Polytechnic Institute»: Machine-building and CAD. 2013; (23): 158–78.

Sklepus SN, Zolochevskii AA. A study of the creep damageability of tubular solid oxide fuel cell. Strength of Materials. 2014; 46 (1): 49–56. DOI: https://doi.org/10.1007/s11223-014-9514-1

Wang J, Lapinski N, Zhang X, Jagota A. Adhesive contact between cylindrical (Ebola) and spherical (SARS-CoV-2) viral particles and a cell membrane. Mechanics of Soft Materials. 2020; 2: 11-1–9. DOI: https://doi.org/10.1007/s42558-020-00026-3

Lidmar J, Mirny L, Nelson DR. Virus shapes and buckling transitions in spherical shells. Physical Review E. 2003; 68 (5): 051910-1–10. DOI: https://doi.org/10.1103/PhysRevE.68.051910

Rodríguez RA, Pepper IL, Gerba CP. Application of PCR-based methods to assess the infectivity of enteric viruses in environmental samples. Applied and Environmental Microbiology. 2009; 75 (2): 297–307. DOI: https://doi.org/10.1128/AEM.01150-08

Rodríguez-Lázaro D, Kovac K, Hernández M. Molecular detection of viruses in foods and food-processing environments. In: Cook N, editor. Viruses in Food and Water: Risks, Surveillance and Control. Cambridge: Woodhead Publishing; 2013. p. 49–78. DOI: https://doi.org/10.1533/9780857098870.2.49

Zandi R, Dragnea B, Travesset A, Podgornik R. On virus growth and form. Physics Reports. 2020; 847: 1–102. DOI: https://doi.org/10.1016/j.physrep.2019.12.005

Barrow E, Nicola AV, Liu J. Multiscale perspectives of virus entry via endocytosis. Virology Journal. 2013;10: 177-1–11. DOI: https://doi.org/10.1186/1743-422X-10-177

Bao G, Bao XR. Shedding light on the dynamics of endocytosis and viral budding. Proceedings of the National Academy of Sciences. 2005; 102 (29): 9997–8. DOI: https://doi.org/10.1073/pnas.0504555102

Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis. Proceedings of the National Academy of Sciences. 2005; 102 (27): 9469–74. DOI: https://doi.org/10.1073/pnas.0503879102

Smith DE, Tans SJ, Smith SB, Grimes S, Anderson DL, Bustamante C. The bacteriophage portal motor can package DNA against a large internal force. Nature. 2001; 413 (6857): 748–52. DOI: https://doi.org/10.1038/35099581

Alsteens D, Newton R, Schubert R, Martinez-Martin D, Delguste M, Roska B, Müller D J. Nanomechanical mapping of first binding steps of a virus to animal cells. Nature Nanotechnology. 2017; 12 (2): 177–83. DOI: https://doi.org/101038/nnano.2016.228

Jefferys EE, Sansom MS. Computational virology: Molecular simulations of virus dynamics and interactions. In: Greber U F, editor. Physical Virology. Vol. 1140. Advances in Experimental Medicine and Biology. Cham: Springer; 2019. p. 201–33. DOI: https://doi.org/10.1007/978-3-030-14741-9_10

Falvo MR, Washburn S, Superfine R, Finch M, Brooks FP, Chi V, Taylor RM. Manipulation of individual viruses: Friction and mechanical properties. Biophysical Journal. 1997; 72 (3): 1396–403. DOI: https://doi.org/10.1016/s0006-3495(97)78786-1

Howard J. Mechanics of Motor Proteins and the Cytoskeleton. Sunderlan: Sinauer Associates; 2001. 373p.

Budday S, Ovaert TC, Holzapfel G A, Steinmann P, Kuhl E. Fifty shades of brain: A review on the mechanical testing and modeling of brain tissue. Archives of Computational Methods in Engineering. 2020; 27: 1187–230. DOI: https://doi.org/10.1007/s11831-019-09352-w

Yengejeh SI, Kazemi SA, Öchsner A. Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: A review. Composites Part B: Engineering. 2016; 86: 95–107. DOI: https://doi.org/10.1016/j.compositesb.2015.10.006

Shokrieh MM, Rafiee R. Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Materials & Design. 2010; 31 (2): 790–5. DOI: https://doi.org/10.1016/j.matdes.2009.07.058

Adhikari P, Li N, Shin M, Steinmetz NF, Twarock R, Podgornik R, Ching WY. Intra- and intermolecular atomic-scale interactions in the receptor binding domain of SARS-CoV-2 spike protein: Implication for ACE2 receptor binding. Physical Chemistry Chemical Physics. 2020; 22 (33): 18272–83. DOI: https://doi.org/10.1039/d0cp03145c

Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020; 181 (2): 281–92. DOI: https://doi.org/10.1016/j.cell.2020.02.058

Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV. Fragmentation methods: A route to

accurate calculations on large systems. Chemical Reviews. 2012; 112 (1): 632–72. DOI: https://doi.org/10.1021/cr200093j

Zink M, Grubmüller H. Mechanical properties of the icosahedral shell of southern bean mosaic

virus: A molecular dynamics study. Biophysical Journal. 2009; 96 (4): 1350–63. DOI: https://doi.org/10.1016/j.bpj.2008.11.028

Zink M, Grubmüller H. Primary changes of the mechanical properties of southern bean mosaic

virus upon calcium removal. Biophysical Journal. 2010; 98 (4): 687–95. DOI: https://doi.org/10.1016/j.bpj.2009.10.047

May ER, Brooks CL. Determination of viral capsid elastic properties from equilibrium

thermal fluctuations. Physical Review Letters. 2011; 106 (18): 188101-1–4. DOI: https://doi.org/10.1103/PhysRevLett.106.188101

Larsson DS, Liljas L, van der Spoel D. Virus capsid dissolution studied by microsecond molecular dynamics simulations. PLoS Computational Biology. 2012; 8 (5): e1002502-1–8. DOI: https://doi.org/10.1371/journal.pcbi.1002502

Zhao G, Perilla JR, Yufenyuy EL, Meng X, Chen B, Ning J, Ahn J, Gronenborn AM, Schulten K, Aiken C, Zhang P. Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature. 2013; 497 (7451): 643–6. DOI: https://doi.org/10.1038/nature12162

May ER. Recent developments in molecular simulation approaches to study spherical virus capsids. Molecular Simulation. 2014; 40 (10–11): 878–88. DOI: https://doi.org/10.1080/08927022.2014.907899

Potoyan D, Papoian GA. The need for computational speed: State of the art in DNA coarse graining. In: Papoian G A, editor. Coarse-Grained Modeling of Biomolecules. Boca Raton: CRC Press; 2018. p. 271–96. DOI: https://doi.org/10.1201/9781315374284-7

Arkhipov A, Freddolino PL, Schulten K. Stability and dynamics of virus capsids described by coarse-grained modeling. Structure. 2006; 14 (12): 1767–77. DOI: https://doi.org/10.1016/j.str.2006.10.003

Cieplak M, Robbins MO. Nanoindentation of 35 virus capsids in a molecular model:

Relating mechanical properties to structure. PloS One. 2013; 8 (6): e63640-1–15. DOI: https://doi.org/10.1371/journal.pone.0063640

Kononova O, Snijder J, Brasch M, Cornelissen J, Dima RI, Marx KA, Wuite GJL, Roos WH, Barsegov V. Structural transitions and energy landscape for cowpea chlorotic mottle virus capsid mechanics from nanomanipulation in vitro and in silico. Biophysical Journal. 2013; 105 (8): 893–1903. DOI: https://doi.org/10.1016/j.bpj.2013.08.032

Kononova O, Zhmurov A, Marx KA, Barsegov V. Mechanics of viruses. In: Papoian GA, editor. Coarse-Grained Modeling of Biomolecules. Boca Raton: CRC Press; 2018. p. 367–416. DOI: https://doi.org/10.1201/9781315374284-10

Rabotnov YN. Solid Mechanics. 2nd ed. Moscow: Nauka; 1988. 712 p.

Altenbach H, Altenbach J, Zolochevsky A. Erweiterte Deformationsmodelle und Versagenskriterien der Werkstoffmechanik. Stuttgart: Deutsher Verlag für Grundstoffindustrie; 1995. 172 S.

Ivanovska IL, De Pablo PJ, Ibarra B, Sgalari G, MacKintosh FC, Carrascosa JL, Schmidt CF, Wuite GJL. Bacteriophage capsids: Tough nanoshells with complex elastic properties. Proceedings of the National Academy of Sciences. 2004; 101 (20): 7600–5. DOI: https://doi.org/10.1073/pnas.0308198101

Michel JP, Ivanovska IL, Gibbons MM, Klug WS, Knobler CM, Wuite GJL, Schmidt CF. Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proceedings of the National Academy of Sciences. 2006; 103 (16): 6184–9. DOI: https://doi.org/10.1073/pnas.0601744103

Ivanovska I, Wuite G, Jönsson B, Evilevitch A. Internal DNA pressure modifies stability of WT phage. Proceedings of the National Academy of Sciences. 2007; 104 (23): 9603–8. DOI: https://doi.org/10.1073/pnas.0703166104

Snijder J, Ivanovska IL, Baclayon M, Roos WH, Wuite GJL. Probing the impact of loading rate on the mechanical properties of viral nanoparticles. Micron. 2012: 43 (12); 1343–50. DOI: https://doi.org/10.1016/j.micron.2012. 04.011

Kol N, Gladnikoff M, Barlam D, Shneck RZ, Rein A, Rousso I. Mechanical properties of murine leukemia virus particles: Effect of maturation. Biophysical Journal. 2006; 91 (2): 767–74. DOI: https://doi.org/10.1529/biophysj.105.079657

Carrasco C, Carreira A, Schaap IAT, Serena PA, Gomez-Herrero J, Mateu MG, De Pablo PJ. DNA-mediated anisotropic mechanical reinforcement of a virus. Proceedings of the National Academy of Sciences. 2006; 103 (37): 13706–11. DOI: https://doi.org/10.1073/pnas.0601881103

Stephanidis B, Adichtchev S, Gouet P, McPherson A, Mermet A. Elastic properties of viruses. Biophysical Journal. 2007; 93 (4): 1354–9. DOI: https://doi.org/10.1529/biophysj.107.109033

Hartschuh RD, Wargacki SP, Xiong H, Neiswinger J, Kisliuk A, Sihn S, Ward V, Vaia RA, Sokolov AP. How rigid are viruses. Physical Review E. 2008; 78 (2): 021907-1–9. DOI: https://doi.org/10.1103/PhysRevE.78.021907

Uetrecht C, Versluis C, Watts NR, Roos WH, Wuite GJ, Wingfield PT, Steven AC, Heck AJR. High-resolution mass spectrometry of viral assemblies: Molecular composition and stability of dimorphic hepatitis B virus capsids. Proceedings of the National Academy of Sciences. 2008; 105 (27): 9216–20. DOI: https://doi.org/10.1073/pnas.0800406105

Roos WH, Gertsman I, May ER, Brooks CL, Johnson JE, Wuite GJ. Mechanics of bacteriophage maturation. Proceedings of the National Academy of Sciences. 2012; 109 (7): 2342–7. DOI: https://doi.org/10.1073/pnas.1109590109

Gibbons MM, Klug WS. Influence of nonuniform geometry on nanoindentation of viral capsids. Biophysical Journal. 2008; 95 (8): 3640–9. DOI: https://doi.org/10.1529/biophysj.108.136176

Klug WS, Roos WH, Wuite GJL. Unlocking internal prestress from protein nanoshells. Physical Review Letters. 2012; 109 (16): 168104-1–5. DOI: https://doi.org/10.1103/PhysRevLett.109.168104

Carrasco C, Luque A, Hernando-Pérez M, Miranda R, Carrascosa JL, Serena PA, De Ridder M, Raman A, Gómez-Herrero J, Schaap IAT, Reguera D, De Pablo PJ. Built-in mechanical stress in viral shells. Biophysical Journal. 2011; 100 (4): 1100–8. DOI: https://doi.org/10.1016/j.bpj.2011.01.008

Li S, Eghiaian F, Sieben C, Herrmann A, Schaap IA. Bending and puncturing the influenza lipid envelope. Biophysical Journal. 2011; 100 (3): 637–45. DOI: https://doi.org/10.1016/j.bpj.2010.12.3701

Jiménez-Zaragoza M, Yubero MP, Martín-Forero E, Castón JR, Reguera D, Luque D, De Pablo PJ, Rodríguez J M. Biophysical properties of single rotavirus particles account for the functions of protein shells in a multilayered virus. Elife. 2018; 7:e37295-1–23. DOI: https://doi.org/10.7554/eLife.37295

Schmatulla A, Maghelli N, Marti O. Micromechanical properties of tobacco mosaic viruses. Journal of Microscopy. 2007; 225 (3): 264–268. DOI: https://doi.org/10.1111/j.1365-2818.2007.01741.x

Zhao Y, Ge Z, Fang J. Elastic modulus of viral nanotubes. Physical Review E. 2008; 78 (3): 031914-1–5. DOI: https://doi.org/10.1103/PhysRevE.78.031914

Picotto GB, Vallino M, Ribotta L. Tip–sample characterization in the AFM study of a rod-shaped nanostructure. Measurement Science and Technology. 2020; 31 (8): 084001-1–19. DOI: https://doi.org/10.1088/1361-6501/ab7bc2

Ankush A. Determination of prestress and elastic properties of virus capsids. Physical Review E. 2018; 97 (3): 032414-1–14. DOI: https://doi.org/10.1103/PhysRevE.97.032414

Roos WH, Gibbons MM, Arkhipov A, Uetrecht C, Watts NR, Wingfield PT, Steven AC, Heck AJR, Schulten K, Klug WS, Wuite GJL. Squeezing protein shells: How continuum elastic models, molecular dynamics simulations, and experiments coalesce at the nanoscale. Biophysical Journal. 2010; 99 (4): 1175–81. DOI: https://doi.org/10.1016/j.bpj.2010.05.033

Mkrtchyan S, Ing C, Chen JZ. Adhesion of cylindrical colloids to the surface of a membrane. Physical Review E. 2010; 81 (1): 011904-1–8. DOI: https://doi.org/0.1103/PhysRevE.81.011904

Chen JZ, Mkrtchyan S. Adhesion between a rigid cylindrical particle and a soft fluid membrane tube. Physical Review E. 2010; 81 (4): 041906-1–9. DOI: https://doi.org/10.1103/PhysRevE.81.041906

Cao SQ, Wei GH, Chen JZ. Bending energy of a vesicle to which a small spherical particle adhere: An analytical study. Chinese Physics B. 2015; 24 (9): 098702-1–9. DOI: https://doi.org/10.1088/1674-1056/24/9/098702

Dragovich MA, Fortoul N, Jagota A, Zhang W, Schutt K, Xu Y, Sanabria M, Moyer DM, Moller-Tank S, Maury W, Zhang XF. Biomechanical characterization of TIM protein–mediated Ebola virus–host cell adhesion. Scientific Reports. 2019; 9: 267-1–13. DOI: https://doi.org/10.1038/s41598-018-36449-2

Yuan H, Zhang S. Effects of particle size and ligand density on the kinetics of receptor-mediated endocytosis of nanoparticles. Applied Physics Letters. 2010; 96 (3): 033704-1–3. DOI: https://doi.org/10.1063/1.3293303

Zhang S, Gao H, Bao G. Physical principles of nanoparticle cellular endocytosis. ACS Nano. 2015; 9 (9): 8655–71. DOI: https://doi.org/10.1021/acsnano.5b03184

Gibbons MM, Chou T, D’orsogna MR. Diffusion-dependent mechanisms of receptor engagement and viral entry. The Journal of Physical Chemistry B. 2010; 114 (46): 15403–12. DOI: https://doi.org/10.1021/jp1080725

Klinge S, Wiegold T, Aygün S, Gilbert RP, Holzapfel GA. On the mechanical modeling of cell components. PAMM. 2021; 20 (1): e202000129-1–4. DOI: https://doi.org/10.1002/pamm.202000129

Zolochevsky A, Hop JG, Servant G, Foosnæs T, Øye H A. Creep and sodium expansion in a semigraphitic cathode carbon. In: Crepeau P N, editor. Light Metals. Warrendale: The Minerals, Metals and Materials Society; 2003. p. 595–602.

Zolochevsky A, Hop JG, Foosnæs T, Øye HA. Surface exchange of sodium, anisotropy of diffusion and diffusional creep in carbon cathode materials. In: Kvande H, editor. Light Metals. San Francisco: The Minerals, Metals and Materials Society; 2005. p. 745–750.

Eggen C, Lin YS, Goncharova G, Zolochevsky A. Diffusion characteristics of a supported lipid bilayer membrane on a dense cylindrical silica optical fibrous support. In: The 2009 AIChE Annual Meeting; 2009 Nov. 8–13; Nashville, USA. 2009. 20 p.

Zolochevsky A. Degradation of perovskite-type ceramic membranes determined by defect chemistry modeling and chemically induced stress analysis. Journal of the National Technical University «Kharkiv Polytechnic Institute»: Machine-building and CAD. 2008; (2): 95–104.

Zolochevsky A, Tkachuk NN, Viricelle JP, Pijolat C. Chemically induced stresses in the cathode of single chamber solid oxide fuel cell. Journal of the National Technical University «Kharkiv Polytechnic Institute»: Machine-building and CAD. 2007; 23: 148–57.

Zolochevsky AA, Goncharova GV, Minko AI, Shalashova IV. Modelling of diffusion induced stresses affected by the psychoactive media in the blood vessels of biomechanical system. Journal of the National Technical University «Kharkiv Polytechnic Institute»: Machine-building and CAD. 2008; (9): 90–7.

Zolochevsky A, Grabovskiy AV, Parkhomenko L., Lin YS. Coupling effects of oxygen surface exchange kinetics and membrane thickness on chemically induced stresses in perovskite-type membranes. Solid State Ionics. 2012; 212: 55–65. DOI: https://doi.org/10.1016/j.ssi.2012.02.003

Zolochevsky A, Parkhomenko L, Kühhorn A. Analysis of oxygen exchange-limited transport and chemical stresses in perovskite-type hollow fibers. Materials Chemistry and Physics. 2012; 135 (2–3): 594–603. DOI: https://doi.org/10.1016/j.matchemphys.2012.05.031

Zolochevsky A, Grabovskiy AV, Parkhomenko L, Lin YS. Transient analysis of oxygen non-stoichiometry and chemically induced stresses in perovskite-type ceramic membranes for oxygen separation. Journal of the National Technical University «Kharkiv Polytechnic Institute»: Machine-building and CAD. 2013; (1): 179–89.

Neuman KC, Nagy A. Single-molecule force spectroscopy: Optical tweezers, magnetic tweezers

and atomic force microscopy. Nature Methods. 2008; 5 (6): 491–505. DOI: https://doi.org/10.1038/nmeth.1218

Carrion-Vazquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li H, Fernandez JM. Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Progress in Biophysics and Molecular Biology. 2000; 74 (1–2): 63–91. DOI: https://doi.org/10.1016/s0079-6107(00)00017-1

Polishchuk VP, Budzanivska IG, Shevchenko TP, Andriychuk OM, Kompanets TA, Kondratyuk OA, Koroteeva GV, Molchanez OV, Harina AV, Shevchenko OV. Virology: A Tutorial for Laboratory Training. Kyiv: Comprint; 2017. 242 p.

Zhou G, Zhang B, Tang G, Yu XF, Galluzzi M. Cells nanomechanics by atomic force microscopy: Focus on interactions at nanoscale. Advances in Physics: X. 2021; 6 (1): 1866668-1–31. DOI: https://doi.org/10.1080/23746149.2020.1866668

De Pablo PJ, Schaap IAT. Atomic force microscopy of viruses. In: Greber U F, editor. Physical Virology. Vol. 1140, Advances in Experimental Medicine and Biology. Cham: Springer; 2019. p. 159–79. DOI: https://doi.org/10.1007/978-3-030-14741-9_8

Hernando-Pérez M, Zeng C, Miguel M C, Dragnea B. Intermittency of deformation and the elastic limit of an icosahedral virus under compression. ACS Nano. 2019; 13 (7): 7842–9. DOI: https://doi.org/10.1021/acsnano.9b02133

Faez S, Lahini Y, Weidlich S, Garmann RF, Wondraczek K, Zeisberger M, Schmidt MA, Orrit M, Manoharan VN. Fast, label-free tracking of single viruses and weakly scattering nanoparticles

in a nanofluidic optical fiber. ACS Nano. 2015; 9(12): 12349–7. DOI: https://doi.org/10.1021/acsnano.5b05646

Kondylis P, Schlicksup CJ, Zlotnick A, Jacobson SC. Analytical techniques to characterize the structure, properties, and assembly of virus capsids. Analytical Chemistry. 2018; 91 (1): 622–36. DOI: https://doi.org/10.1021/acs.analchem.8b04824

Kriegel F, Ermann N, Lipfert J. Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers. Journal of Structural Biology. 2017; 197 (1); 26–36. DOI: https://doi.org/10.1016/j.jsb.2016.06.022

Abels JA, Moreno-Herrero F, Van der Heijden T, Dekker C, Dekker NH. Single-molecule measurements of the persistence length of double-stranded RNA. Biophysical Journal. 2005; 88 (4): 2737–44. DOI: https://doi.org/10.1529/biophysj.104.052811

Roos WH, Ivanovska IL, Evilevitch A, Wuite GJL. Viral capsids: Mechanical characteristics, genome packaging and delivery mechanisms. Cellular and Molecular Life Sciences. 2007; 64 (12): 1484–97. DOI: https://doi.org/10.1007/s00018-007-6451-1

Hertz H. Über die Berührung fester elastischer Körper. Journal für die Reine und Angewandte Mathematik. 1881; 92: 156–71.

Rvachev VL, Protsenko VS. Contact Problems of the Theory of Elasticity for Non-Classical Regions. Kiev: Naukova Dumka; 1977. 235 p.

Borodich FM. The Hertz-type and adhesive contact problems for depth-sensing indentation. In: Bordas S P A, editor. Vol. 47. Advances in Applied Mechanics. London: Academic Press; 2014. p. 225–366, DOI: https://doi.org/10.1016/B978-0-12-800130-1.00003-5

Sneddon IN. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. International Journal of Engineering Science. 1965; 3 (1): 47–57. DOI: https://doi.org/10.1016/0020-7225(65)90019-4

Derjaguin BV, Muller VM, Toporov YP. Effect of contact deformations on the adhesion of particles. Journal of Colloid and Interface Science. 1975; 53 (2): 314–26. DOI: https://doi.org/10.1016/0021-9797(75)90018-1

Johnson KL, Kendall K, Roberts A. Surface energy and the contact of elastic solids. Proceedings of the Royal Society of London A. 1971; 324 (1558): 301–13. DOI: https://doi.org/10.1098/rspa.1971.0141

Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophysical Journal. 2002; 82 (5): 2798–810. DOI: https://doi.org/10.1016/S0006-3495(02)75620-8

Roos WH, Radtke K, Kniesmeijer E, Geertsema H, Sodeik B, Wuite GJ. Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proceedings of the National Academy of Sciences. 2009; 106 (24): 9673–8. DOI: https://doi.org/10.1073/pnas.0901514106

Cuellar JL, Meinhoevel F, Hoehne M, Donath E. Size and mechanical stability of norovirus capsids depend on pH: A nanoindentation study. Journal of General Virology. 2010; 91 (10): 2449–56. DOI: https://doi.org/10.1099/vir.0.021212-0

Baclayon M, Shoemaker GK, Uetrecht C, Crawford SE, Estes MK, Prasad BV, Heck AJR, Wuite GJL, Roos WH. Prestress strengthens the shell of Norwalk virus nanoparticles. Nano Letters. 2011; 11 (11): 4865–9. DOI: https://doi.org/10.1021/nl202699r

Kol N, Shi Y, Tsvitov M, Barlam D, Shneck RZ, Kay MS, Rousso I. A stiffness switch in human immunodeficiency virus. Biophysical Journal. 2007; 92 (5): 1777–83. DOI: https://doi.org/10.1529/biophysj.106.093914

Schaap IAT, Eghiaian F, des Georges A, Veigel C. Effect of envelope proteins on the mechanical properties of influenza virus. Journal of Biological Chemistry. 2012; 287 (49): 41078–88. DOI: https://doi.org/10.1074/jbc.m112.412726

Choi SS, Kim KJ. Mechanical characterization of P2 bacteriophage by using Young’s modulus measurements. AIP Advances. 2021; 11 (1): 015245-1–9. DOI: https://doi.org/10.1063/5.0035106

Jasevičius R. Numerical modeling of coronavirus interaction mechanics with a host human cell. Mechanics of Advanced Materials and Structures. 2020 Dec; 1–28. DOI: https://doi.org/10.1080/15376494.2020.1853857

Wierzbicki T, Li W, Liu Y, Zhu J. Effect of receptors on the resonant and transient harmonic vibrations of coronavirus. Journal of the Mechanics and Physics of Solids. 2021; 150: 104369-1–21. DOI: https://doi.org/10.1016/j.jmps.2021.104369

Reissner E. Stresses and small displacements of shallow spherical shells. II. Journal of Mathematics and Physics. 1946; 25 (1-4): 279–300. DOI: https://doi.org/10.1002/sapm1946251279

Jia YF, Xuan FZ, Yang FQ. Numerical analysis of indentation of an elastic hemispherical shell. Journal of Mechanics. 2016; 32 (3): 245–53. DOI: https://doi.org/10.1017/jmech.2015.59

Kasas S, Longo G, Dietler G. Mechanical properties of biological specimens explored by atomic force microscopy. Journal of Physics D: Applied Physics. 2013; 46 (13): 133001-1–12. DOI: https://doi.org/10.1088/0022-3727/46/13/133001

Mateu MG. Mechanical properties of viruses analyzed by atomic force microscopy: A virological perspective. Virus Research. 2012; 168 (1–2): 1–22. DOI: https://doi.org/10.1016/j.virusres.2012.06.008

Buzón P, Maity S, Roos WH. Physical virology: From virus self‐assembly to particle mechanics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2020; 12 (4): e1613-1–22. DOI: https://doi.org/10.1002/ wnan.1613

Smith SB, Cui Y, Bustamante C. Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996; 271 (5250): 795–9. DOI: https://doi.org/10.1126/science.271.5250.795

Cocco S, Marko JF, Monasson R. Theoretical models for single-molecule DNA and RNA experiments: From elasticity to unzipping Comptes Rendus Physique. 2002; 3 (5): 569–84. DOI: https://doi.org/10.1016/S1631-0705(02)01345-2

Morii T, Mizuno R, Haruta H, Okada T. An AFM study of the elasticity of DNA molecules. Thin Solid Films. 2004; 464: 456–8. DOI: https://doi.org/10.1016/j.tsf.2004.06.066

Gore J, Bryant Z, Nöllmann M, Le MU, Cozzarelli NR, Bustamante C. DNA overwinds when stretched. Nature. 2006: 442 (7104), 836–9. DOI: https://doi.org/10.1038/nature04974

Lin Y, Shen X, Wang J, Bao L, Zhang Z, Pang D. Measuring radial Young’s modulus of DNA by tapping mode AFM. Chinese Science Bulletin. 2007: 52 (23); 3189–92. DOI: https://doi.org/10.1007/s11434-007-0475-7

Pak YE, Kim DS, Marimuthu M, Kim S. Nanomechanics of biomolecules: Focus on DNA. Journal of Mechanical Science and Technology. 2009; 23 (7): 1949–58. DOI: https://doi.org/10.1007/s12206-009-0525-y

Li L, Zhang X, Wang H, Lang Q, Chen H, Liu L Q. Measurement of radial elasticity and original height of DNA duplex using tapping-mode atomic force microscopy. Nanomaterials. 2019; 9 (4): 561-1–10. DOI: https://doi.org/10.3390/nano9040561

Nguyen TH, Lee SM, Na K, Yang S, Kim J, Yoon ES. An improved measurement of dsDNA elasticity using AFM. Nanotechnology. 2010; 21 (7): 075101-1–7. DOI: https://doi.org/10.1088/0957-4484/21/7/075101

Li L, Liu L, Tabata O, Li W J. Elasticity measurement of DNA origami nanotube in liquid with tapping mode AFM. In: The 9th IEEE International Conference on Nano/micro Engineered and Molecular Systems (NEMS). New York: IEEE; 2014. p. 684–7. DOI: https://doi.org/10.1109/nems.2014.7031669

Brown ER, Mendoza EA, Kuznetsova Y, Neumann A, Brueck SRJ. High-resolution THz spectroscopy to measure strong THz absorption signatures of si-RNA in solution. In: Pereira M F, Shulika O, editors.Terahertz and Mid Infrared Radiation: Generation, Detection and Applications. Dordrecht: Springer; 2011. p. 15–22. DOI: https://doi.org/10.1007/978-94-007-0769-6_3

Herrero-Galán E, Fuentes-Perez M E, Carrasco C, Valpuesta JM, Carrascosa JL, Moreno-Herrero F, Arias-Gonzalez J R. Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. Journal of the American Chemical Society. 2013; 135 (1): 122–31. DOI: https://doi.org/10.1021/ja3054755

Liangruksa M, Laomettachit T, Wongwises S. Theoretical study of DNA’s deformation and instability subjected to mechanical stress. International Journal of Mechanical Sciences. 2017; 130: 324–30. DOI: https://doi.org/10.1016/j.ijmecsci.2017.06.017

Kachanov L. Introduction to Continuum Damage Mechanics. Dordrecht: Springer; 1986. 135p. DOI: https://doi.org/10.1007/978-94-017-1957-5

Winter W, Heckmann SM, Weber HP. A time-dependent healing function for immediate loaded implants. Journal of Biomechanics. 2004; 37 (12): 1861–7. DOI: https://doi.org/10.1016/j.jbiomech.2004.02.033

Barbero E J, Greco F, Lonetti P. Continuum damage-healing mechanics with application to self-healing composites. International Journal of Damage Mechanics. 2005; 14 (1): 51–81. DOI: https://doi.org/10.1177/1056789505045928

Darabi M K, Al-Rub R K A, Little D N. A continuum damage mechanics framework for modeling micro-damage healing. International Journal of Solids and Structures. 2012; 49 (3–4):492–513. DOI: https://doi.org/10.1016/j.ijsolstr.2011.10.017

Voyiadjis GZ, Oucif C, Kattan PI, Rabczuk T. Damage and healing mechanics in plane stress, plane strain, and isotropic elasticity. International Journal of Damage Mechanics. 2020; 29 (8): 1246–70. DOI: https://doi.org/10.1177/1056789520905347

Bloom KS. Beyond the code: The mechanical properties of DNA as they relate to mitosis. Chromosoma. 2008; 117 (2): 103–10. DOI: https://doi.org/10.1007/s00412-007-0138-0

Zolochevskii AA. Modification of the theory of plasticity of materials differently resistant to tension and compression for simple loading processes. Soviet Applied Mechanics. 1988; 24 (12): 1212–7. DOI: https://doi.org/10.1007/bf00887929

Zolochevskii AA. Effect of the type of loading on the creep of isotropic strain-hardening materials. Soviet Applied Mechanics. 1988; 24 (2): 185–91. DOI: https://doi.org/10.1007/bf00883831

Zolochevskij AA. Kriechen von Konstruktionselementen aus Materialien mit von der Belastung abhängigen Charakteristiken. Technische Mechanik. 1988; 9 (3): 177–84.

Altenbach H, Zolochevsky AA. Eine energetische Variante der Theorie des Kriechens und der Langzeitfestigkeit für isotrope Werkstoffe mit komplizierten Eigenschaften. Zeitschrift für Angewandte Mathematik und Mechanik. 1994; 74 (3): 189–99. DOI: https://doi.org/10.1002/zamm.19940740311

Mahnken R. Creep simulation of asymmetric effects by use of stress mode dependent weighting functions. International Journal of Solids and Structures. 2003; 40 (22): 6189–209. DOI: https://doi.org/10.1016/s0020-7683(03)00388-3

Betten J, Sklepus A, Zolochevsky A. A constitutive theory for creep behavior of initially isotropic materials sustaining unilateral damage. Mechanics Research Communications. 2003; 30 (3): 251–6. DOI: https://doi.org/10.1016/s0093-6413(03)00002-8

Zolochevsky A, Yeseleva E, Ehlers W. An anisotropic model of damage for brittle materials with different behavior in tension and compression. Forschung im Ingenieurwesen. 2005: 69 (3); 170–80. DOI: https://doi.org/10.1007/s10010-005-0150-6

Huth A, Duddu R, Smith B. A generalized interpolation material point method for shallow ice shelves. 2: Anisotropic nonlocal damage mechanics and rift propagation. Journal of Advances in Modeling Earth Systems. 2021; 13: e2020MS002292-1–26. DOI: https://doi.org/10.1029/2020MS002292

Jin S, Harmuth H. Asymmetric creep modeling of common refractory ceramics with high temperature wedge splitting test. Engineering Fracture Mechanics. 2021; 252: 107819-1–12. DOI: https://doi.org/10.1016/j.engfracmech.2021. 107819

Ju X, Mahnken R, Xu Y, Liang L, Zhou W. A nonuniform transformation field analysis for composites with strength difference effects in elastoplasticity. International Journal of Solids and Structures. 2021; 228: 111103-1–16. DOI: https://doi.org/10.1016/j.ijsolstr.2021.111103

Yang Y, Zhan L, Liu C, Xu Y, Li G, Wu X, Huang M, Hu Z. Tension-compression asymmetry of stress-relaxation ageing behavior of AA2219 alloy over a wide range of stress levels. Materials Science and Engineering A. 2021; 823: 141730-1–10. DOI: https://doi.org/10.1016/j.msea.2021.141730

Zhang L, Lu M, Han L, Cao J. A model reduction method for nonlinear analysis of materials and structures with tension–compression asymmetric properties. Composite Structures. 2021; 262: 113613-1–13. DOI: https: //doi.org/10.1016/j. compstruct.2021.113613

Zolochevskyi OO, Parkhomenko LO, Martynenko OV. Effect of non-stoichiometry and difference between the tensile and compressive moduli of elasticity of perovskite on the diffusion creep of a thick-walled perovskite cylinder. International Applied Mechanics. 2021; 57 (3): 336–46. DOI: https://doi.org/10.1007/s10778-021-01085-3

Carrasco C, Castellanos M, de Pablo PJ, Mateu MG. Manipulation of the mechanical properties of a virus by protein engineering. Proceedings of the National Academy of Sciences. 2008; 105 (11): 4150–5. DOI: https://doi.org/10.1073_pnas.0708017105

Ting TCT. The remarkable nature of radially symmetric deformation of spherically uniform linear anisotropic elastic solids. Journal of Elasticity. 1998: 53 (1); 47–64. DOI: https://doi.org/10.1023/A:1007516218827

Buehler MJ, Yung YC. Deformation and failure of protein materials in physiologically extreme conditions and disease. Nature Materials. 2009; 8 (3): 175–88. DOI: https://doi.org/10.1038/nmat2387

Božič AL, Šiber A. Electrostatics-driven inflation of elastic icosahedral shells as a model for swelling of viruses. Biophysical Journal. 2018; 115 (5): 822–9. DOI: https://doi.org/10.1016/j.bpj.2018.07.032

Kuznetsov YG, Larson SB, Day J, Greenwood A, McPherson A. Structural transitions of satellite tobacco mosaic virus particles. Virology. 2001; 284 (2): 223–34. DOI: https://doi.org/10.1006/viro.2000.0914

Speir JA, Munshi S, Wang G, Baker TS, Johnson JE. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure. 1995; 3 (1): 63–78. DOI: https://doi.org/10.1016/S0969-2126(01)00135-6

Incardona NL, Kaesberg P. A pH-induced structural change in bromegrass mosaic virus. Biophysical Journal. 1964; 4 (1): 11–21. DOI: https://doi.org/10.1016/S0006-3495(64)86766-7

Bond KM, Lyktey NA, Tsvetkova IB, Dragnea B, Jarrold MF. Disassembly intermediates of the brome mosaic virus identified by charge detection mass spectrometry. The Journal of Physical Chemistry B. 2020; 124 (11): 2124–31. DOI: https://doi.org/10.1021/acs.jpcb.0c00008

Witz J, Brown F. Structural dynamics, an intrinsic property of viral capsids. Archives of Virology. 2001; 146 (12): 2263–74. DOI: https://doi.org/10.1007/s007050170001

Cherstvy AG. Electrostatic interactions in biological DNA-related systems. Physical Chemistry Chemical Physics. 2011; 13 (21): 9942–68. DOI: https://doi.org/10.1039/c0cp02796k

Mahalik JP, Muthukumar M. Langevin dynamics simulation of polymer-assisted virus-like assembly. The Journal of Chemical Physics. 2012; 136 (13): 04B602-1–13. DOI: https://doi.org/10.1063/1.3698408

Lu B, Stubbs G, Culver JN. Carboxylate interactions involved in the disassembly of tobacco mosaic tobamovirus. Virology. 1996; 225 (1): 11–20. DOI: https://doi.org/10.1006/viro.1996.0570

Culver JN. Tobacco mosaic virus assembly and disassembly: Determinants in pathogenicity

and resistance. Annual Review of Phytopathology. 2002; 40 (1): 287–308. DOI: https://doi.org/10.1146/annurev.phyto.40.120301.102400

Sachse C, Chen JZ, Coureux PD, Stroupe ME, Fändrich M, Grigorieff N. High-resolution electron microscopy of helical specimens: A fresh look at tobacco mosaic virus. Journal of Molecular Biology. 2007; 371 (3): 812–35. DOI: https://doi.org/10.1016/j.jmb.2007.05.088

De Pablo PJ. Atomic force microscopy of virus shells. Seminars in Cell and Developmental Biology. 2018; 73: 199–208. DOI: https://doi.org/10.1016/j.semcdb.2017.08.039

Yu SM. Squeezed virus produces electricity. Nature Nanotechnology. 2012; 7 (6): 343–4. DOI: https://doi.org/10.1038/nnano.2012.85

Garrido A, Pashley RM, Ninham BW. Low temperature MS2 (ATCC15597-B1) virus inactivation using a hot bubble column evaporator (HBCE). Colloids and Surfaces B: Biointerfaces. 2017; 151: 1–10. DOI: https://doi.org/10.1016/j.colsurfb.2016.11.026

Washizu K. Variational Methods in Elasticity and Plasticity. 3rd ed. Oxford: Pergamon Press; 1982. 630.

Zolochevskii AA. Verification of the governing equations for the nonlinear deformation of materials with different strengths in tension and compression. Journal of Applied Mechanics and Technical Physics. 1986; 27 (6): 913–7. DOI: https://doi.org/10.1007/bf00918838

Zolochevsky A. Identification of damage variable in ceramic matrix composite with different behaviour in tension and compression. In: Bradt R C, Hasselman D P H, Munz D, Sakai M, Shevchenko V Y, editors. Vol. 12, Fracture Mechanics of Ceramics. Boston: Springer; 1996. p. 413–28. DOI: https://doi.org/10.1007/978-1-4615-5853-8_30

Zolochevsky A, Obataya Y. Tension-compression asymmetry of creep and unilateral creep damage in aluminum for isothermal and nonisothermal processes. JSME International Journal A: Solid Mechanics and Material Engineering. 2001; 44 (1): 100–8. DOI: https://doi.org/10.1299/jsmea.44.100

Miehe C, Rosato D. A rate-dependent incremental variational formulation of

ferroelectricity. International Journal of Engineering Science. 2011; 49 (6): 466–96. DOI: https://doi.org/10.1016/j.ijengsci.2010.11.003

Chen H, Cai LX. An elastoplastic energy model for predicting the deformation behaviors of various structural components. Applied Mathematical Modelling, 68, 405–421. DOI: https://doi.org/10.1016/j.apm.2018.11.024

Ma J, Chen G, Ji L, Qian L, Dong S. A general methodology to establish the contact force model for complex contacting surfaces. Mechanical Systems and Signal Processing. 2020; 140: 106678-1–21. DOI: https://doi.org/10.1016/j.ymssp.2020.106678

Zolochevsky A, Sklepus S, Kozmin Y, Kozmin A, Zolochevsky D, Betten J. Constitutive equations of creep under changing multiaxial stresses for materials with different behavior in tension and compression. Forschung im Ingenieurwesen. 2004; 68 (4): 182–96. DOI: https://doi.org/10.1007/s10010-003-0123-6

Zolochevsky A, Voyiadjis GZ. Theory of creep deformation with kinematic hardening for materials with different properties in tension and compression. International Journal of Plasticity. 2005; 21 (3): 435–62. DOI: https://doi.org/10.1016/j.ijplas.2003.12.007

Song Z, Komvopoulos K. An elastic–plastic analysis of spherical indentation: Constitutive equations for single-indentation unloading and development of plasticity due to repeated indentation. Mechanics of Materials. 2014; 76: 93–101. DOI: https://doi.org/10.1016/j.mechmat.2014.05.005

Zolochevsky A, Obataya Y, Betten J. Critical plane approach with two families of microcracks for modelling of unilateral fatigue damage. Forschung im Ingenieurwesen. 2000; 66 (2): 49–56. DOI: https://doi.org/10.1007/s100100000036

Zolochevsky A, Itoh T, Obataya Y, Betten J. A continuum damage mechanics model with the strain-based approach to biaxial low cycle fatigue failure. Forschung im Ingenieurwesen. 2000; 66 (2): 67–73. DOI: https://doi.org/10.1007/s100100000040

Zolochevsky A, Stepchenko A, Betten J. A microcrack description of multiaxial low cycle fatigue. Technische Mechanik. 2001; 21 (2): 109–20.

Zolochevskii A A. Allowance for differences in strain resistance in the creep of isotropic and

anisotropic materials. Journal of Applied Mechanics and Technical Physics. 1982; 23 (4): 591–6. DOI: 10.1007/BF00916729

Zolochevskii AA. Tensor relationship in the theories of elasticity and plasticity of anisotropic composite materials with different tensile and compressive strength. Mechanics of Composite Materials. 1985; 21 (1): 41–6. DOI: https://doi.org/10.1007/BF00611805

Zolochevskii AA. Determining equations and some problems of the variable-modulus theory of elasticity of anisotropic materials. Journal of Applied Mechanics and Technical Physics. 1985; 26 (4): 572–8. DOI: https://doi.org/10.1007/BF01101644

Zolochevskii AA. Theory of cylindrical shells of anisotropic materials of different moduli. Soviet Applied Mechanics. 1986; 22 (3): 230–5. DOI: https://doi.org/10.1007/BF00887243

Pahr DH, Reisinger AG. A review on recent advances in the constitutive modeling of bone tissue. Current Osteoporosis Reports. 2020; 18: 696–704. DOI: https://doi.org/10.1007/s11914-020-00631-1

Pasynok МA. Development of anisotropic creep analysis methods taking into account damage of flat structural elements of machines [PhD thesis]. Kharkiv: National Technical University «Kharkiv Polytechnic Institute»; 2000.193 p.

Schwiedrzik JJ, Wolfram U, Zysset PK. A generalized anisotropic quadric yield criterion and its application to bone tissue at multiple length scales. Biomechanics and Modeling in Mechanobiology. 2013; 12 (6): 1155–68. DOI: https://doi.org/10.1007/s10237-013-0472-5

Levrero-Florencio F, Margetts L, Sales E, Xie S, Manda K, Pankaj P. Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach. Journal of the Mechanical Behavior of Biomedical Materials. 2016; 61: 384–96. DOI: https://doi.org/10.1016/j.jmbbm.2016.04.008

Panyasantisuk J, Pahr DH, Zysset PK. Effect of boundary conditions on yield properties of human femoral trabecular bone. Biomechanics and Modeling in Mechanobiology. 2016; 15 (5): 1043–53. DOI: https://doi.org/10.1007/s10237-015-0741-6

Schwiedrzik J, Raghavan R, Rüggeberg M, Hansen S, Wehrs J, Adusumalli RB, Zimmermann T, Michler J. Identification of polymer matrix yield stress in the wood cell wall based on micropillar compression and micromechanical modelling. Philosophical Magazine. 2016; 96 (32–34): 3461–78. DOI: https://doi.org/10.1080/14786435. 2016.1235292

Wang J, Xiao Y. Some improvements on Sun–Chen’s one-parameter plasticity model for fibrous composites. Part I: Constitutive modelling for tension–compression asymmetry response. Journal of Composite Materials. 2017; 51 (3): 405–18. DOI: https://doi.org/10.1177/0021998316644853

Levrero-Florencio F, Manda K, Margetts L, Pankaj P. Effect of including damage at the tissue level in the nonlinear homogenisation of trabecular bone. Biomechanics and Modeling in Mechanobiology. 2017: 16 (5): 1681–95. DOI: https://doi.org/10.1007/s10237-017-0913-7

Levrero-Florencio F, Manda K, Margetts L, Pankaj P. Nonlinear homogenisation of trabecular

bone: Effect of solid phase constitutive model. Proceedings of the Institution of Mechanical

Engineers H: Journal of Engineering in Medicine. 2017; 231 (5): 405–14. DOI: https://doi.org/10.1177/0954411916676220

Stipsitz M, Zysset PK, Pahr DH. Efficient materially nonlinear μFE solver for simulations of trabecular bone failure. Biomechanics and Modeling in Mechanobiology. 2019; 19 (5): 861–74. DOI: https://doi.org/10.1007/s10237-019-01254-x

Wang J, Xiao Y, Inoue K, Kawai M, Xue Y. Modeling of nonlinear response in loading-unloading tests for fibrous composites under tension and compression. Composite Structures. 2019; 207: 894–908. DOI: https://doi.org/10.1016/j.compstruct.2018.09.054

Speed A, Groetsch A, Schwiedrzik JJ, Wolfram U. Extrafibrillar matrix yield stress and failure envelopes for mineralised collagen fibril arrays. Journal of the Mechanical Behavior of Biomedical Materials. 2020; 105:103563-1–39. DOI: https://doi.org/10.1016/j.jmbbm.2019.103563

Xie Y, Xiao Y, Lv J, Zhang Z, Zhou Y, Xue Y. Influence of creep on preload relaxation of bolted composite joints: Modeling and numerical simulation. Composite Structures. 2020; 245: 112332-1–15. DOI: https://doi.org/10.1016/j.compstruct.2020.112332

Zolochevsky A, Martynenko A, Kühhorn A. Structural benchmark creep and creep damage testing for finite element analysis with material tension–compression asymmetry and symmetry. Computers and Structures. 2012; 100-101: 27–38. DOI: https://doi.org/10.1016/j.compstruc.2012.02.021

Zolochevsky A, Becker AA. Introduction to ABAQUS. Kharkiv: Business Investor Group; 2011. 48 p.

Zolochevsky A, Sklepus S, Hyde TH, Becker AA, Peravali S. Numerical modeling of creep and creep damage in thin plates of arbitrary shape from materials with different behavior in tension and compression under plane stress conditions. International Journal for Numerical Methods in Engineering. 2009;80 (11): 1406–36. DOI: https://doi.org/10.1002/nme.2663

Maksudov F, Kononova O, Llauró A, Ortega-Esteban A, Douglas T, Condezo GN, San Martín C,

Marx KA, Wuite GJ, Roos WH, De Pablo PJ, Barsegov V. Fluctuating nonlinear spring theory:

Strength, deformability, and toughness of biological nanoparticles from theoretical reconstruction

of force-deformation spectra. Acta Biomaterialia. 2021; 122: 263–77. DOI: https://doi.org/10.1016/j.actbio.2020.12.043

Bauer MS, Gruber S, Hausch A, Milles LF, Nicolaus T, Schendel LC, Navajas PL, Procko E, Lietha D, Bernardi RC, Gaub HE, Lipfert J. A tethered ligand assay to probe SARS-CoV-2: ACE2 interactions. bioRxiv. 2021:1-21. DOI: https://doi.org/10.1101/2021.08.08.455468

Published
2022-04-13
How to Cite
Zolochevsky, A., Parkhomenko, S., & Martynenko, A. (2022). Quantum, molecular and continuum modeling in nonlinear mechanics of viruses. The Journal of V. N. Karazin Kharkiv National University, Series "Medicine", (44). https://doi.org/10.26565/2313-6693-2022-44-01