• Sevda Muradova Azerbaijan Medical University, Azerbaijan, Baku
  • Sara Gurbanova Azerbaijan Medical University, Azerbaijan, Baku
  • Suruya Hadjieva Azerbaijan Medical University, Azerbaijan, Baku
  • Mehman Aliyev Azerbaijan Medical University, Azerbaijan, Baku
Keywords: C. albicans, S. aureus, colonization, interaction


Microbial interactions in Staphylococcus aureus–Candida albicans dual-species biofilms is a relevant research topic given the significant contribution of these microorganisms to hospital-acquired infections. Therefore, the purpose of our investigation was to study the interaction of opportunistic C. albicans and S. aureus in vivo and in vitro, both with the participation of normal microflora and in mice with antibacterial dysbiosis. The study of mentioned interactions was carried out on 100 white male mice weighing approximately 18 grams in vivo and using smears prepared from the grown mixed cultures of C. albicans and S. aureus and the Japan JEM 1400 transmission electron microscope for the purpose of electron microscopic study of microorganisms in vitro. Healthy mice forming control groups and mice with antibiotic-induced dysbiosis (after introduction of vancomycin, gentamicin, ampicillin) were divided into groups to create a mono- and associative infection: Ι group was given 1×107 CFU of C. albicans, II group – 1×108 CFU of S. aureus, and III group – a mixture of specified concentrations of C. albicans and S. aureus in the same proportion. Microorganisms causing monoinfection were being isolated from the body of animals treated with antibiotics till the end of the experiments in large quantities unlike in case of the healthy mice. Co-inoculation of these microbes in the same dose to animals (co-infection), which were injected with antibiotics, turned out to be fatal for them, whereas an adhesive bond was seen between the cells of C. albicans vs. S. aureus in vitro. As can be seen, such bacterial-fungal co-infection reduce substantially the effectiveness of antibiotic therapy and the likelihood of successful treatment and can not be ignored when choosing the appropriate treatment


Download data is not yet available.

Author Biographies

Sevda Muradova, Azerbaijan Medical University, Azerbaijan, Baku

Azerbaijan Medical University, 167 Samad Vurgun St., Baku, AZ1022, Azerbaijan

Sara Gurbanova, Azerbaijan Medical University, Azerbaijan, Baku

Azerbaijan Medical University, 167 Samad Vurgun St., Baku, AZ1022, Azerbaijan

Suruya Hadjieva, Azerbaijan Medical University, Azerbaijan, Baku

Azerbaijan Medical University, 167 Samad Vurgun St., Baku, AZ1022, Azerbaijan

Mehman Aliyev, Azerbaijan Medical University, Azerbaijan, Baku

Azerbaijan Medical University, 167 Samad Vurgun St., Baku, AZ1022, Azerbaijanжан


Ahtarieva A. A., Savchenko T. A., Gabidullin Z. G., Kamalova A. A. Sravnitelnoe izuchenie agemolitichsekoj aktivnosti monokultur , i ih sokultiviruemyh variacij. // Problemy Med. Mikologii, – 2014. tom 16. – No. 2, – p. 41.

Lof M., Janus M., Krom B. Metabolic interactions between bacteria and fungi in commensal oral biofilms // Journal of Fungi. – 2017. – Т. 3. – No. 3. – p. 40.

Van Dijck P., Jabra-Rizk M. A. Fungal–Bacterial Interactions: In Health and Disease // Candida albicans: Cellular and Molecular Biology. – Springer, Cham, 2017. – p. 115–143.

Gilbert J. A. et al. Current understanding of the human microbiome // Nature medicine. – 2018. – Т. 24. – No. 4. – p. 392.

Zelezniak A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities // Proceedings of the National Academy of Sciences. – 2015. – p. 201421834.

Kozlov L. B., Saharov S. P., Dic E. V. Rol mikrobnyh associacij v infekcionnoj patologii cheloveka. // Zh. Fundamentalnye issledovaniya, – 2013. – No. 9, (chast 3). – s. 366–370.

Lloyd-Price J. et al. Strains, functions and dynamics in the expanded Human Microbiome Project // Nature. – 2017. – Т. 550. – No. 7674. – p. 61.

Lynch S. V., Pedersen O. The human intestinal microbiome in health and disease // New England Journal of Medicine. – 2016. – Т. 375. – No. 24. – p. 2369–2379.

Brian M. Peters, Mairi C. Noverr. Candida albicans –Staphylococcus aureus polymicrobial peritonits modulates host innate immunity. // Infect.Immun., june 2013., vol.81, – No. 6, – p.2178–2189.

Ellepola A. N. B., Samaranayake L. P., Khan Z. U. Extracellular phospholipase production of oral Candida albicans isolates from smokers, diabetics, asthmatics, denture wearers and healthy individuals following brief exposure to polyene, echinocandin and azole antimycotics // brazilian journal of microbiology. – 2016. – Т. 47. – No. 4. – p. 911–916.

Mayer F. L., Wilson D., Hube B. Candida albicans pathogenicity mechanisms // Virulence. – 2013. – Т. 4. – No. 2. – p. 119–128.

Lohse M. B. et al. Development and regulation of single-and multi-species Candida albicans biofilms // Nature Reviews Microbiology. – 2018. – Т. 16. – No. 1. – p. 19.

Hall C. W., Mah T. F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria // FEMS Microbiology Reviews. – 2017. – Т. 41. – No. 3. – p. 276–301.

Kong E. F. et al. Commensal protection of Staphylococcus aureus against antimicrobials by Candida albicans biofilm matrix // MBio. – 2016. – Т. 7. – No. 5. – p. e01365-16.

Zago C. E. et al. Dynamics of biofilm formation and the interaction between Candida albicans and methicillin-susceptible (MSSA) and-resistant Staphylococcus aureus (MRSA) // PLoS One. – 2015. – Т. 10. – No. 4. – p. e0123206.

De Brucker K. et al. Fungal β-1, 3-glucan increases ofloxacin-tolerance of Escherichia coli in a polymicrobial E. coli–Candida albicans biofilm // Antimicrobial agents and chemotherapy. – 2015. – p. AAC. 04650-14.

Krause J., Geginat G., Tammer I. Prostaglandin E2 from Candida albicans stimulates the growth of Staphylococcus aureus in mixed biofilms // PloS one. – 2015. – Т. 10. – No. 8. – p. e0135404.

Allison D. L. et al. Candida-Bacteria Interactions: Their Impact on Human Disease // Microbiology spectrum. – 2016. – Т. 4. – No. 3.

Kong E. F. et al. Modulation of Staphylococcus aureus response to antimicrobials by the Candida albicans quorum sensing molecule farnesol // Antimicrobial agents and chemotherapy. – 2017. – p. AAC. 01573– 17.

Schlecht L. M. et al. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue // Microbiology. – 2015. – Т. 161. – No. 1. – p. 168–181.

Hoyer L. L., Cota E. Candida albicans agglutinin-like sequence (Als) family vignettes: a review of Als protein structure and function // Frontiers in microbiology. – 2016. – Т. 7. – p. 280.

Lin Y. J., Alsad L., Vogel F, Koppar Sh., Nevarez L., Auguste F., Seymour J. et al. Interactions between Candida albicans and Staphylococcus aureus within mixed species biofilms. // Bios, 2013, Vol., 84, No. 1, p. 30–39.

Kean R. et al. Candida albicans mycofilms support Staphylococcus aureus colonization and enhances miconazole resistance in dual-species interactions // Frontiers in microbiology. – 2017. – Т. 8. – p. 258.

How to Cite
Muradova, S., Gurbanova, S., Hadjieva, S., & Aliyev, M. (2019). CANDIDA ALBICANS AND STAPHYLOCOCCUS AUREUS CO-INFECTION IN MICE AFTER ANTIBIOTIC-INDUCED DYSBIOSIS. The Journal of V. N. Karazin Kharkiv National University, Series "Medicine", (36), 15-22. Retrieved from
Clinical research