ENVIRONMENTAL SAFETY OF TRENCHLESS TECHNOLOGIES

Keywords: : distribution pipelines, gas pipelines, oil pipelines, earthworks, pipeline reconstruction, man-made disasters, reliability of energy supply, environmental safety, environment

Abstract

DOI: https://doi.org/10.26565/2079-1747-2025-36-04 

The article provides an analysis of modern trenchless technologies for the construction of communication networks, which include pipelines for water and energy supply, electrical cables and communication cables. Since trenchless laying of communications involves creating a cavity in the soil, the relevant technical means and processes that occur in this process were reviewed.

Due to the fact that the purpose of the environmental expertise of works production projects is to minimize anthropogenic and technical impact on the environment, preserve and improve their properties for the sake of human health, the purpose of the article was to identify the features of these technologies from the point of view of environmental safety. The paper analyzed the current standards and requirements for environmental safety for each standardization object separately. Namely: protection of water resources, protection of the air basin, protection of the quality and properties of soils.

Considering that earthworks are associated with a significant loss of crop yields, an additional assessment of the impact of soil structural changes on the yield was made when creating wells in the soil by radial compaction. Relevant conclusions and practical recommendations for trenchless laying of underground communications were made.

Trends in the development of modern construction technologies are moving towards trenchless methods of construction work, which have their own characteristics and impact on environmental safety. Consideration of modern trenchless technologies from the point of view of environmental safety is a relevant issue. 

Downloads

Download data is not yet available.

References

Kabinet Ministriv Ukrainy 2006, Enerhetychna stratehiia Ukrainy na period do 2030 roku [Energy strategy of Ukraine for the period up to 2030], viewed

Diak, IV & Osinchuk, ZP 2000, ‘Hazova promyslovist Ukrainy na zlami stolitt’ [Gas industry of Ukraine at the turn of the century], Lileia-NV, Ivano-Frankivsk.

Haazka konferentsiia z Yevropeiskoi enerhetychnoi khartii 2006, ‘Zakliuchnyi dokument’ [Final document of the Hague Conference on the European Energy Charter], viewed < http://zakon4.rada.gov.ua/laws/show/995_061>

Kostenko, EO & Miroshnychenko, VV 2012, ‘Enerhetranzitnyi potentsial Ukrainy ta perspektyvy yoho realizatsii u konteksti zabezpechennia enerhetychnoi bezpeky’ [Energy transit potential of Ukraine and prospects for its implementation in the context of energy security], Efektyvna ekonomika, Vol. 9

Musiiko, VD, Kuzminets, MP & Balanin, VKh 2010, ‘Bezpeka ta resursozberezhennia pid chas vykonannia kapitalnoho remontu magistralnoho truboprovodnoho transportu’ [Safety and resource saving during major repairs of trunk pipeline transport], Suchasni informatsiini ta innovatsiini tekhnolohii na transporti, Vol. 1, Pp. 175–179

Kovalko, MP, Hrudz, VYa, Mykhalkiv, VB et al 2002, Truboprovidnyi transport hazu [Pipeline gas transport], Ahentstvo z ratsionalnoho vykorystannia enerhii ta ekologii, Kyiv.

Vasyliuk, VM 2016, ‘Nadiiinst ta bezpeka transportuvannia nafty terytorieiu Ukrainy’ [Reliability and safety of oil transportation in Ukraine], Naftohazovyi kompleks Ukrainy na shliakhu reformuvannia, modernizatsii, rozvytku, Kyiv, 26.10.2016, viewed

Vasyliuk, VM 2009, ‘Osnovni napriamky zabezpechennia nadiinosti ekspluatatsii magistralnykh naftoprovodiv Ukrainy’ [Main directions for ensuring reliability of operation of trunk oil pipelines], Zabezpechennia ekspluatatsiinoi nadiinosti system truboprovidnoho transport, Kyiv, Pp. 5–8

Ukrtranshaz 2023, My transportuiemo ta zberihaiemo enerhiiu nezaleznosti [We transport and store the energy of independence], viewed <http://utg.ua>

DSTU ISO 19011:2003 2003, Nastanovy shchodo zdiisnennia auditiv system kerivnytstva yakistiu ta (abo) ekolohichnoho upravlinnia [Guidelines for auditing management systems], viewed <https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=7242>

ISO 2023, Grupa standartiv – otsiniuvannia vplyvu na dovkillya [Group of standards – environmental impact assessment], viewed <https://www.iso.org/ua/ics/13.020.30.html>

DSTU 2984-95 1995, Zasoby transportni dorozhni [Road transport means], viewed <https://dnaop.com/html/60087/doc-ДСТУ_2984-95>

DSTU 4276:2004 2004, Systema standartiv u haluzi okhorony navkolyshnoho seredovyshcha ta ratsionalnoho vykorystannia resursiv. Atmosfera. Normy i metody vimiryuvan dymnosti [Standards system in environmental protection and rational resource use. Atmosphere. Methods of smoke measurement], viewed <https://www.ksv.biz.ua/GOST/DSTY/dsty_4276-2004.pdf>

Alaoui, A & Diserens, E 2011, ‘Changes in soil structure guiding trafficability’ [Changes in soil structure guiding trafficability], Geoderma, Vol. 163, Pp. 283–290

Batey, T 2009, ‘Soil compaction and soil management – a review’ [Soil compaction and soil management – a review], Soil Use and Management, Vol. 25, Pp. 335–345

Horn, R, Domżzał, H, Słowińska-Jurkiewicz, A & Van Ouwerkerk, C 1995, ‘Soil compaction processes and their effects on the structure of arable soils and the environmen’, Soil and Tillage Research, Vol. 35, Pp. 23–36

Nawaz, MF, Bourrié, G & Trolard, F 2013, ‘Soil compaction and modelling: a review’, Agronomy for Sustainable Development, Vol. 33, Pp. 291–309, DOI: 10.1007/s13593-011-0071-8

Sakai, H, Nordfjell, T, Suadicani, K, Talbot, B & Bøllehuus, E 2008, ‘Complex of forest machinery trafficability assessment’, Croatian Journal of Forest Engineering, Vol. 29, Pp. 15–27

Suponiev, VM 2018, ‘Vyznachennia velychyny zony deformuvannia hruntu konusno-tsylindrychnym nakonechnikom ta tysku na bichnii poverkhni’ [Determination of deformation zone and lateral pressure of soil by cone-cylinder tip], Visnyk KhNAHU, Vol. 83, Pp. 22–28

Suponiev, V, Kravets, S, Posmitukha, A & Kulashenko, Y 2018, ‘Determination of deformation zone and lateral pressure on underground utilities’, Technology Audit and Production Reserves, Vol. 5/1 (43), Pp. 11–16, DOI: 10.15587/2312-8372.2018.146626

Bohatov, O, Suponiev, V, Ragulin, V, Yaryzhko. O & Musiiko, V 2022, ‘Suchasnyi tekhnichnyi stan mahistralnykh truboprovodiv ta otsinka ekolohichnoi bezpeky pry transportuvanni po nym enerhetychnykh nosiiv’ [Current technical condition of main pipelines and assessment of environmental safety when transporting energy carriers along them], Visnyk Kharkivskoho natsionalnoho avtomobilno-dorozhnoho universytetu, iss. 99, Pp. 151–158.

Suponyev, V, Ragulin, V, Oleksyn, V, Koval, O, Koval, A & Vysokovych, Y 2024, ‘Determining the angle of the frontal working surface of the soil-piercing head asymmetrical tip for static soil-piercing’, Automobile Transport, no 54, Pp. 25–31. DOI: https://doi.org/10.30977/AT.2219-8342.2024.54.0.03

Published
2025-12-22
Section
Статті