“Improving the quality of assembly technology by determining the size of the closing link under thermal stress”

Keywords: quality of technology, assembly accuracy, thermal influence, dimensional chain, closing link

Abstract

DOI: https://doi.org/10.32820/2079-1747-2023-32-5-13 

The article proposes a research methodology for determining the size of the closing link in
the calculation of assembly dimensional chains, taking into account the influence of temperature
gaps. The presented analysis of the technological preparation of production has revealed the need
to include the calculation of dimensional chains as one of the elements of dimensional analysis,
which is determined by a set of calculation and analytical procedures carried out during the
development and analysis of structures and technological processes. In turn, the efficiency of
dimensional chains calculation using the probabilistic method largely depends on the extent to
which the influence of random factors on the values of the constituent links and the closing link is
taken into account. Studies have confirmed that the calculation of the nominal value of the closing
link does not meet the requirements set out in the specifications when compared with the results
obtained when calculating without taking into account the influence of temperature gaps.
However, the practical assembly of the rotor of the SVPT-340-1000 LMZ feed pump, taking into
account the influence of temperature gaps, can lead to an improvement in the axial assembly
accuracy by 5% to 13% and a reduction in the gap between the ends of the rotor wheel and the
discharge disc by 6% to 10% without the need to use additional technological equipment.

Downloads

Download data is not yet available.

References

Kalchenko, V, Kalchenko, V, Tsybulia, S & Sakhno Ye (2020), ‘Vyznachennia pokhybky protsesiv shlifuvannia ta shvydkisnoho frezeruvannia z urakhuvanniam statychnoi ta dynamichnoi nevrivnovazhenosti’ [Determination of the error of grinding and high-speed milling processes considering static and dynamic unbalance], Tekhnichni nauky ta tekhnolohii. No 3(21), Pp. 72-78, DOI: 10.25140/2411-5363-2020-3(21)-72-78

Denysiuk, VI, Symoniuk, VP, Lapchenko, YuS & Novosad, BI (2020), ‘Metrolohichne zabezpechennia tochnosti pryladiv aktyvnoho kontroliu v protsesi obrobky’ [Metrological support for the accuracy of active control devices in the machining process], Perspektyvni tekhnolohii ta prylady, no 16, Pp. 38-47, DOI: 10.36910/6775-2313-5352-2020-16-6.

Denysiuk, VI, Symoniuk, VP, Lapchenko, YuS, Kaidyk, OL & Stashenchuk, VV (2021), ‘Doslidzhennia protsesiv obrobky detalei pry udarno-impulsnomu navantazhenni vibrobunkera’ [Research of part machining processes under impact-impulse loading in a vibrating bunker], Perspektyvni tekhnolohii ta prylady, no 18, Pp. 43-50, DOI: 10.36910/6775-2313-5352-2021-18-6.

Kryvchyk, LS, Khokhlova, TS & Pinchuk, VL (2019), ‘Udoskonalennia tekhnolohii termichnoi obrobky presovoho instrumentu dlia presuvannia nerzhaviiuchykh trub’ [Improvement of the thermal treatment technology for the pressing tool used in stainless steel tube pressing], Metalurhiina ta hirnychorudna promyslovist, no 5-6, Pp. 47-56, DOI: 10.34185/0543-5749.2019-5-6-47-56.

Novikov, V, Polianskyi, I (2020), ‘Vyznachennia umov pidvyshchennia yakosti mekhanichnoi obrobky za temperaturnym kryteriiem’ [Determination of conditions for enhancing the quality of mechanical processing based on temperature criteria], Perspektyvni tekhnolohii ta prylady, no 17, Pp. 99-106, DOI: 10.36910/6775-2313-5352-2020-17-15.

Babachenko, O, Kononenko, H, Podolskyi, R & Safronova, O, (2022), ‘Rozroblennia khimichnoho skladu stali ta rezhymu termichnoi obrobky zaliznychnykh kolis dlia ekspluatatsii v lehkykh umovakh halmuvannia za vysokykh navantazhen na vis’ [Development of the chemical composition of steel and thermal treatment regime for railway wheels to operate under light braking conditions with high axle loads], Metaloznavstvo ta termichna obrobka metaliv, no 1, Pp. 9-16, DOI:10.30838/J.PMHTM.2413.240422.9.837.

Deineko, LM, Borysenko, AYu, Taranenko, AO, Zaitseva, TO, & Romanova, NS (2020), ‘Doslidzhennia struktury ta vlastyvostei nyzkolehovanoi malovuhletsevoi stali z feryto-beinitnoiu strukturoiu pislia termichnoho zmitsnennia ta nastupnoho vidpusku’ [Study of the structure and properties of low-alloy low-carbon steel with ferrite bainite structure after thermal strengthening and subsequent tempering], Metalurhiina ta hirnychorudna promyslovist, no 1, Pp. 33-46, DOI: 10.34185/0543-5749.2020-1-33-46.

Vynnyk, V (2019), ‘Analiz metodiv obrobky kryvoliniinykh poverkhon kulachkiv rozpodilnykh valiv oriientovanym instrumentom’ [Analysis of methods for machining cam surfaces of distribution shafts using oriented tools], Tekhnichni nauky ta tekhnolohii, no 4(18), Pp. 74-84, DOI: 10.25140/2411-5363-2019-4(18)-74-84.

Shornikova, S (2022), ‘Shorstkist poverkhni yak odna iz osnovnykh heometrychnykh kharakterystyk yakosti poverkhni detalei. metody ta zasoby kontroliu’ [Surface roughness as one of the primary geometric characteristics of surface quality in components. Methods and means of control], Tavriiskyi naukovyi visnyk. Seriia: Tekhnichni nauky, no 5, Pp. 13-20, DOI: 10.32851/tnv-tech.2022.5.2.

Pukhovskyi, Ye, Frolov, V, Prykhodko, V & Betsko, Yu (2023), ‘Tekhnolohichni problemy vyhotovlennia korpusnykh detalei khimichnykh mashyn ta aparativ’ [Technological challenges in manufacturing casing components for chemical machinery and apparatus], Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. Seriia: Mekhanizatsiia ta avtomatyzatsiia vyrobnychykh protsesiv, iss 4, Pp. 92-103, DOI: 10.32845/msnau.2022.4.13.

Zenkin, A, Oborskyi, I & Ostapuk, Yu (2012), ‘Osoblyvosti stvorennia verstativ dlia skladannia ziednan z termodiieiu’ [Features of creating machines for assembling connections with thermal effect], Tekhnolohiia i tekhnika drukarstva, iss 53-59, DOI: 10.20535/2077-7264.2(36).2012.32449.

Zenkin, AC, Karazei, VD, Hobatiuk, YeO & Mazur, MP (2009), Tekhnolohiia mashynobuduvannia [Mechanical Engineering Technology], Novyi svit_2000, Lviv

Plankovskyi, SI, Tsehelnyk, YeV, Myntiuk, VB, Zadorozhnyi, SM & Kombarov, VV (2020), ‘Metod virtualnoho bazuvannia detalei z formoiu, nablyzhenoiu do formy zahotovok’ [The method of virtual alignment of parts with a shape approximating that of blanks], Aviatsiino-kosmichna tekhnika i tekhnolohiia, no 4, Pp. 74-82, DOI: 10.32620/aktt.2020.4.09.

Hryhorieva, NS, Marchuk, IV & Shabaikovych, VA (2022), ‘Prohnozuvannia rozvytku kompiuterno-intehrovanoho skladalnoho vyrobnytstva pryladobuduvannia’ [Forecasting the development of computer-integrated assembly production in instrument making], Perspektyvni tekhnolohii ta prylady, iss. 20, Pp. 32-37, DOI: 10.36910/6775-2313-5352-2022-20-05.

Pasichnyk, VA (2009), ‘Osnovy kompiuterno-intehrovanoho mekhanoskladalnoho vyrobnytstva’ [Fundamentals of computer-integrated mechanical assembly production], Dokt. tekhn. nauk thesis, Natsionalnyi tekhnichnyi universytet Ukrainy "KPI", Kiev

Burdeina, VM, Hrinchenko, HS, Artiukh, SM & Trishch, AR (2021), ‘Tochnist koordynuvaty otvoriv maloho diametru z napriamkom rizalnoho instrumentu’ [The precision of coordinating small diameter holes with the direction of the cutting tool], Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI». Seriia: Novi rishennia v suchasnykh tekhnolohiiakh, no 2, Pp. 9-14, DOI https://doi.org/10.20998/2413-4295.2021.02.02

Hrinchenko, HS, Teslov, O, Kozlov, MS, Marchenko, OO, Zakharov, SO & Herasymov, YeV (2022), ‘Alhorytm proektuvannia system avtomatychnoho upravlinnia tochnistiu mekhanichnoi obrobky na verstatakh z ChPU’ [Algorithm for designing automatic precision control systems for mechanical processing on CNC machines], Mashynobuduvannia, no 29, Pp. 50-61, DOI 10.32820/2079-1747-2022-29-50-61

Published
2024-05-16
Section
Статті