Алгебраїчний імунітет нелінійних вузлів симетричних шифрів

  • Alexandr Kuznetsov Харківський національний університет імені В.Н. Каразіна
  • Yuriy Gorbenko АТ «Інститут інформаційних технологій» (ІІТ), Харків
  • Ivan Belozertsev Харківський національний університет імені В.Н. Каразіна
  • Alina Andrushkevich Харківський національний університет імені В.Н. Каразіна
  • Aleksey Naregniy Харківський національний університет імені В.Н. Каразіна
Ключові слова: симетричні шифри, алгебраїчний імунітет, нелінійні вузли заміни

Анотація

Досліджуються методи обчислення алгебраїчної імунністі криптографічних булевих функцій і нелінійних вузлів замін (підстановок) симетричних шифрів. Наводяться результати порівняльного аналізу алгебраїчної імунністі нелінійних вузлів симетричних шифрів.

Завантаження

##plugins.generic.usageStats.noStats##

Біографії авторів

Alexandr Kuznetsov, Харківський національний університет імені В.Н. Каразіна

Д.т.н., проф., академік Академії наук прикладної радіоелектроніки

Yuriy Gorbenko, АТ «Інститут інформаційних технологій» (ІІТ), Харків

К.т.н., с.н.с.

Ivan Belozertsev, Харківський національний університет імені В.Н. Каразіна

Студент

Alina Andrushkevich, Харківський національний університет імені В.Н. Каразіна

м.н.с

Aleksey Naregniy, Харківський національний університет імені В.Н. Каразіна

К.т.н., с.н.с.

Посилання

Menezes A. J. Handbook of Applied Cryptography / Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone. – CRC Press, 1997. – 794 р.

Gorbenko I.D. Prykladna kryptologija. Teorija. Praktyka. Zastosuvannja: pidruchnyk dlja vyshhyh navch. zakladiv / I.D. Gorbenko, Ju.I. Gorbenko. – Kharkiv: Vyd-vo «Fort», 2013. – 880 s.

Preneel B. Analysis and Design of Cryptographic Hash Functions [Electronic resource]. – Way of access: homes.esat.kuleuven.be/~preneel/phd_preneel_feb1993.pdf.

Carlet C. Vectorial boolean functions for cryptography. – Cambridge: Cambridge Univ. Press. – 95 p. [Electronic resource]. – Way of access: www.math.univ-paris13.fr/~carlet/chap-vectorial-fcts-corr.pdf.

Carlet C. Boolean functions for cryptography and error correcting codes. – Cambridge : Cambridge Univ. Press, 2007. – 148 p. [Electronic resource]. – Access mode: www1.spms.ntu.edu.sg/~kkhoongm/chap-fcts-Bool.pdf.

Zepeng Z. On correlation properties of Boolean functions / Zhuo Zepeng, Zhang Weiguo // Chinese Journal of Electronics. –2011. – Vol.20. – №1. – Р.143-146.

O’Connor L. An analysis of a class of algorithms for S-box construction / L. O’Connor // J. Cryptology. – 1994. – Р. 133-151.

Clark J.A., Jacob J.L., Stepney S. The Design of S-Boxes by Simulated Annealing / J.A. Clark, J.L. Jacob, S. Stepney // New Generation Computing. – 2005. – Issue 23(3). – Р.219–231.

Kuznetsov A.A. Analiz i sravnitel'nye issledovaniya nelineinykh uzlov zameny sovremennykh blochnykh simmetrichnykh shifrov / A.A. Kuznetsov, I.N. Belozertsev, A.V. Andrushkevich // Prikladnaya radioelektronika. – 2015. – T.14. – №4. – S. 343 – 350.

Courtois N. Algebraic Attacks on Stream Ciphers with Linear Feedback / N. Courtois, W. Meier // Eurocrypt 2003: LNCS. – 2003. – Vol.2656. – Р. 345-359.

Meier W. Algebraic Attacks and Decomposition of Boolean Functions / W. Meier, E. Pasalic, C. Carlet // Eurocrypt 2004: LNCS. – 2004. – Vol.3027. – Р. 474-491.

Courtois N. Cryptanalysis of Block Ciphers with Overdefined Systems of Equations / Nicolas Courtois, Josef Pieprzyk // LNCS. – 2002. – Vol.2501. – Р.267–287.

Ars G. Algebraic Immunities of functions over finite fields / Gw´enol´e Ars, Jean-Charles Faug`ere // RR-5532: [Research Report]. – INRIA, 2005. – Р.17.

Baev V. V. Effektivnye algoritmy polucheniya otsenok algebraicheskoi immunnosti bulevykh funktsii: dissertatsiya na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk : 01.01.09 / Baev Vladimir Valer'evich; [Mesto zashchity: Mosk. gos. un-t im. M.V. Lomonosova. Fak. vychislit. matematiki i kibernetiki]. – Moskva, 2008. – 101 s.

Arzhantsev I.V. Bazisy Grebnera i sistemy algebraicheskikh uravnenii / I.V. Arzhantsev. // Sovremennaya matematika: Letnyaya shkola (Dubna, iyul' 2002). – Moskva: MTsNMO, 2003. – 68 s.

Zlobin A.I. Komp'yuternaya algebra v sisteme Sage: uchebnoe posobie / A.I. Zlobin, O.V. Sokolova. – Moskva: MGTU im. Baumana, 2011. – 55 s.

Faugère J.-C. A new efficient algorithm for computing Gröbner bases / J.-C. Faugère // Journal of Pure and Applied Algebra: [F4]. –1999. – Issue 139 (1). – Р.61–88.

Faugère J.-C. A new efficient algorithm for computing Gröbner bases without reduction to zero / J.-C. Faugère // Proceedings of the International Symposium on Symbolic and algebraic computation (ISSAC, 2002, July): [F5]. – 2002. – Р.75–83.

Gröbner Bases, Coding, and Cryptography / Massimiliano Sala, Teo Mora, Ludovic Perret, Shojiro Sakata, Carlo Traverso. – Berlin: Springer-Verlag Heidelberg. – 426 p.

FIPS 197. National Institute of Standards and Technology: Advanced Encryption Standard. – 2001 [Electronic resource]. – Way of access: http://www.nist.gov/aes. – Title from the screen.

ISO/IEC 18033-3. Information technology – Security techniques – Encryption algorithms, Part 3: Block ciphers. – 80 p.

DSTU 7624:2014. Informacijni tehnologii'. Kryptografichnyj zahyst informacii'. Algorytm symetrychnogo blokovogo pe-retvorennja. – Kyi'v: Minekonomrozvytku Ukrai'ny, 2015. – 238 s.

GOST R 34.12-2015. Informatsionnaya tekhnologiya. Kriptograficheskaya zashchita informatsii. Blochnye shifry. – Moskva: Standartinform, 2015. – 25 s.

STB 34.101.31-2011. Informatsionnye tekhnologii i bezopasnost'. Kriptograficheskie algoritmy shifrovaniya i kontrolya tselostnosti. – Minsk: Gosstandart, 2011. – 32 s.

ISO/IEC 10118-3:2004. Information technology – Security techniques – Hash-functions – Part 3: Dedicated hash-functions. – 94 p.

Magma Computational Algebra System [Electronic resource]. – Way of access: http://magma.maths.usyd.edu.au/magma. – Title from the screen.

Courtois N. Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations / Nicolas Courtois, Alexander Klimov, Jacques Patarin, Adi Shamir // Proceedings of the 19th international conference on Theory and application of cryptographic techniques EUROCRYPT'00. – 2000. – P. 392 – 407.

Courtois N. Cryptanalysis of Block Ciphers with Overdefined Systems of Equations / Nicolas Courtois, Josef Pieprzyk // Advances in cryptology (ASIACRYPT, 2002). – 2002. – Р. 267-287.

Pyshkin A. Algebraic Cryptanalysis of Block Ciphers Using Grobner Bases: Dissertation zur Erlangung des Grades Doktor rerum naturalium / Andrey Pyshkin; [Technischen Universitat Darmstadt]. – Darmstadt, 2008. – 118 р.
Опубліковано
2017-03-26
Цитовано
Як цитувати
Kuznetsov, A., Gorbenko, Y., Belozertsev, I., Andrushkevich, A., & Naregniy, A. (2017). Алгебраїчний імунітет нелінійних вузлів симетричних шифрів. Комп’ютерні науки та кібербезпека, (4), 42-55. вилучено із https://periodicals.karazin.ua/cscs/article/view/8267
Номер
Розділ
Статті

Найбільш популярні статті цього автора (авторів)