Peculiarities of solvatochromism of 4-[[(2,4-dinitrophenyl)methylene]imino-2,6-diphenyl]phenol and Reichardt’s dye. DFT calculations
Abstract
One of the current directions of development of modern physical chemistry is the working out of sensor devices and molecular probes for the study of various properties of solutions, colloidal systems and biological objects. The latter include solvatochromic dyes, which, thanks to Reichardt's classic works, have found wide application for quantitative assessment of the solvating ability of individual and, to a lesser extent, mixed solvents of various nature.
The different behavior of Reichardt and 4-[[(2,4-dinitrophenyl)methylene]imino-2,6-diphenyl]phenol dyes in pure water and mixed water-organic solvents, when their composition is changed, indicates that their electronic structure undergoes a fundamental change during the transition from the ground state to the first excited state.
The aim of the work was to study and compare the HOMO and LUMO structure of the standard Reichardt betaine dye and the 4-[[(2,4-dinitrophenyl)methylene]imino-2,6-diphenyl]phenol dye using the stationary and time-dependent density functional theory (DFT).
It is proved that the 4-[[(2,4-dinitrophenyl)methylene]imino-2,6-diphenyl]phenol dye has two active exchangeable solvation centers and therefore has an excellent solvation mechanism, at least in aqueous solution, compared to Reichardt dye, which should appear upon its solvation also in mixed water-organic solvents with a high water content in them.
Downloads
References
Dimrot K.; Rneichard Ch.; Sriepmann Th.; Bohlmann F. Uber Pyridinium-N-phenol-betaine und ihre Verwendung zur Charakterisierung der Polaritat von Losungsmitteln. Annalen der chemie band. 1963, 661, 1-37. https://doi.org/10.1002/jlac.19636610102.
Rettig W. Charge Separation in Excited States of Decoupled SystemsTICT Compounds and Implications Regarding the Development New Laser Dyes and the Primary Processes of Vision and Photosynthesis. Angewandte Chemie International Edition in English. 1986, 25(11), 971-988. https://doi.org/10.1002/anie.198609711.
Samat A.; De Keukeleire D.; Guglielmetti R. Synthesis and Spectrokinetic Properties of Photochromic Spiropyrans. Bulletin des Societes Chimiques Belges. 1991, 100(9), 679-700. https://doi.org/10.1002/bscb.19911000908.
Shekhovtsov S.V.; Omelchenko I.V.; Dyakonenko V.V.; [et.al.] Synthesis and crystal structure determination of 2,6-di-tert-butyl-4-(2,4,6-triphenylpyridinium-1-yl)phenolate and its corresponding perchlorate salt. Dyes and Pigments. 2012, 92(3), 1394-1399. http://doi.org/10.1016/j.dyepig.2011.06.029.
Schramm A.D.S.; Nicoleti C.R.; Stock R.I.; Heying R.S.; Bortoluzzi A.J.; Machado V.G. Anionic optical devices based on 4-(nitrostyryl)phenols for the selective detection of fluoride in acetonitrile and cyanide in water. Sensors and Actuators B: Chemical. 2016, 240, 1036-1048. https://doi.org/10.1016/j.snb.2016.09.052.
Stock R.I.; Sandri Cr.; Rezende M.C.; Machado V.G. Solvatochromic behavior of substituted 4-(nitrostyryl)phenolate dyes in pure solvents and in binary solvent mixtures composed of water and alcohols. Journal of Molecular Liquids. 2018, 264, 327-336. https://doi.org/10.1016/j.molliq.2018.05.042.
Jeong J.; Su Min K.; Kumar R.S.; Mergu N.; Son Y.-A. Synthesis of novel betaine dyes for multi chromic sensors. Journal of Molecular Structure. 2019, 1187, 151-163. https://doi.org/10.1016/j.molstruc.2019.03.074
Da Silva D.C.; Ricken I.; Silva M.A. do R.; Machado V.G. Solute-solvent and solvent-solvent interactions in the preferential solvation of Brooker's merocyanine in binary solvent mixtures. Journal of Physical Organic Chemistry. 2002; 15(7), 420–427. https://doi.org/10.1002/poc.519.
De Melo C.E.A.; Nicoleti C.R.; Nandi L.G.; [et.al.]. Solvatochromism of new substituted 4-[(E)-(4-nitrophenyl)diazenyl]phenolate dyes. Journal of Molecular Liquids. 2019, 301, 112330. https://doi.org/10.1016/j.molliq.2019.112330
Giusti L.A.; Marini V.G.; Machado V.G. Solvatochromic behavior of 1-(p-dimethilaminophenil)-2-nitroethylen in 24 binary solvent mixtures composed of amides and hidoxilic solvents. Journal of molecular liquids. 2009, 150(1-3), 9-15. https://doi.org/10.1016/j.molliq.2009.09.002.
Machado V.G.; Stock R.I.; Reichardt C. Pyridinium N-Phenolate Betaine Dyes. Chemical Reviews. 2014, 114(20), 10429–10475. https://doi.org/10.1021/cr5001157.
Makitra R.G.; Pirig Y.N.; Kivelyuk R.B. Relation between parameter of electrophilicity of reichardt-dimroth et solvents and polarity and polarizability. Zhurnal Obshchei Khimii 1990, 60(10), 2209-2215.
Bekarek V.,; Jurina J. A contribution to evaluation of influence of medium in electronic and infrared spectroscopy. Collect. Czech. Commun.1982, 47, 1060-1068.
Fowler F.W.; Katritzky A.R.; Rutherfo R.J. The correlation of solvent effects on physical and chemical properties. Journal of the Chemical Society B: Physical Organic. 1971, 460-469. https://doi.org/10.1039/J29710000460.
Zhang S.G.; Qi X.J.; Ma X.Y.; Lu L.J.; Deng Y.Q. Hydroxyl Ionic Liquids: The Differentiating Effect of Hydroxyl on Polarity due to Ionic Hydrogen Bonds between Hydroxyl and Anions. The Journal of Physical Chemistry B. 2010, 114(11), 3912-3920. https://doi.org/10.1021/jp911430t.
Schuster P.; Jakubetz W.; Marius W. Molecular models for the solvation of small ions and polar molecules. Topics in Current Chemistry. 1975, 60, 1-107. https://doi.org/10.1007/BFb0045206
Cerуn-Carrasco J.P.; Jacquemina D.; Laurence Chr.; Planchat A.; Reichardt Chr.; Sraidi Kh. Solvent polarity scales: determination of new ET(30) values for 84 organic solvents. Journal of Physical Organic Chemistry. 2014, 27(6),512-518. https://doi.org/10.1002/poc.3293.
Evans L.T. A simple solubility theory combining solubility parameter and Lewis acid-base concepts. PhD. Thesis, Rochester Institute of Technology, 1988, 1-120.
Gutman V. Empirical parameters for donor and acceptor properties of solvent. Electrochimica Acta. 1976, 21, 661-670. https://doi.org/10.1016/0013-4686(76)85034-7
Wohlfarth, Ch.: Landolt-Bцrnstein, New Series, Group IV, Physical Chemistry, Volume 17, Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures, Berlin: Springer-Verlag, 2008.
Nandi L.; Facin F.; Marini V.; [et.al.]. Nitro-Substituted 4-[(Phenylmethylene) imino]phenolates: Solvatochromism and Their Use as Solvatochromic Switches and as Probes for the Investigation of Preferential Solvation in Solvent Mixtures. The Journal of Organic Chemistry. 2012, 77(23), 10668-10679. https://doi.org/10.1021/jo301890r
Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.