Nitroxyl spin probe in ionic micelles: A molecular dynamics study

  • Vladimir S. Farafonov V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0003-0785-9582
  • Alexander V. Lebed V.N. Karazin Kharkiv National University, School of Chemistry, 4 Svobody sqr., 61022 Kharkiv, Ukraine https://orcid.org/0000-0001-5175-816X
Keywords: methyl-5-doxylstearate, sodium dodecyl sulfate, dodecyltrimethylammonium bromide, localization, conformation, hydration, hydrogen bond

Abstract

The compounds containing nitroxyl radical (NO˙) are actively used as spin probes to examine colloid systems, including lipid membranes and micelles. Their electron paramagnetic resonance spectrum provides information about the composition of the medium, in particular, the content of water there. Yet, the proper treatment of the measurement results demands understanding the microscopic characteristics of the molecular probe. In the present paper, we extend our previous studies on the microscopic state of acid-base and solvatochromic probes in surfactant micelles to the field of spin probes. We report the results of molecular dynamics simulation of a common spin probe, methyl-5-doxylstearate, in micelles of anionic (sodium n-dodecyl sulfate, SDS) and cationic (n-dodecyltrimethylammonium bromide, DTAB) surfactants. The localization of the molecule within the micelles, its shape, composition of the local environment, hydration were quantified and compared with the available relevant experimental data. No significant dissimilarity was found in the characteristics of the probe molecule in both kinds of micelles. However, the characteristics of the O˙ atom carrying the unpaired electron are pronouncedly different, namely, in DTAB micelles it is less hydrated and forms less hydrogen bonds with water. Similar situation was observed for the COO group. The main reason was found to be the interactions with cationic surfactant headgroups, which screen the O˙ atom and COO group from water. These findings allowed revisit the point of view that the surface layer of DTAB micelles as a whole is less hydrated in comparison to that of the SDS ones.

Downloads

Download data is not yet available.

References

Bahri M. A., Hoebeke M., Grammenos A., Delanaye L., Seret A. Investigation of SDS, DTAB and CTAB Micelle Microviscosities by Electron Spin Resonance. // Colloids Surf. A 2006. Vol.290, No.1–3. P.206–212.

Mchedlov-Petrossyan N. O., Vodolazkaya N. A., Yakubovskaya A. G., Grigorovich A. V., Alek-seeva V. I., Savvina L. P. A Novel Probe for Determination of Electrical Surface Potential of Sur-factant Micelles: N,N'-Di-n-Octadecylrhodamine. // J. Phys. Org. Chem. 2007. Vol.20, No.5. P.332–344.

Mchedlov-Petrossyan N. O. Protolytic equilibrium in lyophilic nanosized dispersions: differentiat-ing influence of the pseudophase and salt effects. // Pure Appl. Chem. 2008. Vol.80, No.7. P.1459–1510.

Machado V. G., Stock R. I., Reichardt C. Pyridinium N-phenolate betaine dyes. // Chem. Rev. 2014. Vol.114, No. 20. P.10429–10475.

Lebedeva N., Bales B. L. Location of Spectroscopic Probes in Self-Aggregating Assemblies. I. The Case for 5-Doxylstearic Acid Methyl Ester Serving as a Benchmark Spectroscopic Probe to Study Micelles. // J. Phys. Chem. B 2006. Vol.110, No.20. P.9791–9799.

Lebedeva N., Zana R., Bales B. L. A Reinterpretation of the Hydration of Micelles of Dodecyl-trimethylammonium Bromide and Chloride in Aqueous Solution. // J. Phys. Chem. B 2006. Vol.110, No.20. P.9800–9801.

Plieninger P., Baumgärtel H. A. 1H NMR Investigation Concerning the Insertion of Pyridinium N-Phenoxide Betaines into Micelles. // Liebigs Ann. Chem. 1983. Vol.5. P.860–875.

Tada E. B., Novaki L. P., El Seoud O. A. Solvatochromism in Cationic Micellar Solutions: Effects of the Molecular Structures of the Solvatochromic Probe and the Surfactant Headgroup. // Lang-muir 2001. Vol.17, No.3. P.652–658.

Rakitin A. R., Pack G. R. Molecular Dynamics Simulations of Ionic Interactions with Dodecyl Sulfate Micelles. // J. Phys. Chem. B 2004. Vol.108, No.8. P.2712–2716.

Farafonov V. S., Lebed A. V. Developing and validating a set of all-atom potential models for sodium dodecyl sulfate. // J. Chem. Theory Comput. 2017. Vol.13, No.6. P.2742−2750.

Gao F., Yan H., Yuan S. Fluorescent Probe Solubilised in Cetyltrimethylammonium Bromide Micelles by Molecular Dynamics Simulation. // Mol. Simul. 2013. Vol.39, No.13. P. 1042–1051.

Mchedlov-Petrossyan N. O., Farafonov V. S., Cheipesh T. A., Shekhovtsov S. V., Nerukh D. A., Lebed A. V. In search of an optimal acid-base indicator for examining surfactant micelles: Spec-trophotometric studies and molecular dynamics simulations. // Coll. Surf. A 2019. Vol.565. P.97–107.

Farafonov V. S., Lebed A. V., Mchedlov-Petrossyan N. O. An MD simulation study of Reich-ardt’s betaines in surfactant micelles: Unlike orientation and solvation of cationic, zwitterionic, and anionic dye species within the pseudophase. // Kharkov Univ. Bull., Chem. Ser. 2018. Vol.30, No.53. P.27–35.

Farafonov V. S., Lebed A. V., Mchedlov-Petrossyan N. O. Examining solvatochromic Reichardt’s dye in cationic micelles of different size via molecular dynamics. // Vopr. Khim. Khim. Tekhnol. 2018. Vol.5. P.62–68.

Mathias E. V., Liu X., Franco O., Khan I., Ba Y., Kornfield J. A. Model of Drug-Loaded Fluoro-carbon-Based Micelles Studied by Electron-Spin Induced 19F Relaxation NMR and Molecular Dynamics Simulation. // Langmuir 2008. Vol.24, No.3. P.692–700.

Aliaga C., Bravo-Moraga F., Gonzalez-Nilo D., Márquez S., Lühr S., Mena G., Rezende M. C. Location of TEMPO derivatives in micelles: subtle effect of the probe orientation. // Food Chem-istry 2016. Vol.192. P.395–401.

Giampaolo A. D., Cerichelli G., Chiarini M., Daidone I., Aschi M. Structure and solvation proper-ties of aqueous sulfobetaine micelles in the presence of organic spin probes: a Molecular Dynam-ics simulation study. // Struct. Chem. 2013. Vol.24. P.945–953.

Kyrychenko A., Ladokhin A. S. Molecular Dynamics Simulations of Depth Distribution of Spin-Labeled Phospholipids within Lipid Bilayer. // J. Phys. Chem. B 2013. Vol.117, No.19. P.5875–5885.

Laudadio E., Galeazzi R., Mobbili G., Minnelli C., Barbon A., Bortolus M., Stipa P. Depth Distri-bution of Spin-Labeled Liponitroxides within Lipid Bilayers: A Combined EPR and Molecular Dynamics Approach. // ACS Omega 2019. Vol.4, No.3. P.5029–5037.

Stoica I. Force field impact and spin-probe modeling in molecular dynamics simulations of spin-labeled T4 lysozyme. // J. Mol. Model. 2005. Vol.11. P.210–225.

Oganesyan V. S., Chami F., White G. F., Thomson A. J. A combined EPR and MD simulation study of a nitroxyl spin label with restricted internal mobility sensitive to protein dynamics. // J. Magn. Reson. 2017. Vol.274. P.24–35.

Mukerjee P., Ramachandran C., Pyterl R. A. Solvent Effects on the Visible Spectra of Nitroxides and Relation to Nitrogen Hyperfine Splitting Constants. Nonempirical Polarity Scales for Aprotic and Hydroxylic Solvents. // J. Phys. Chem. 1982. Vol.86, No.16. P.3189–3197.

Grieser F., Drummond C. J. The Physicochemical Properties of Self-Assembled Surfactant Ag-gregates As Determined by Some Molecular Spectroscopic Probe Techniques. // J. Phys. Chem. 1988. Vol.92, No.20. P.5580−5593.

Vanquelef E., Simon S., Marquant G., Garcia E., Klimerak G., Delepine J. C., Cieplak P., Dupradeau F.-Y. R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. // Nucleic Acids Res. 2011. Vol.39. P.511–517.

Published
2020-06-29
Cited
How to Cite
Farafonov, V. S., & Lebed, A. V. (2020). Nitroxyl spin probe in ionic micelles: A molecular dynamics study. Kharkiv University Bulletin. Chemical Series, (34), 57-64. https://doi.org/10.26565/2220-637X-2020-34-02