Comparative Evaluation of Computational Methods for Modeling SARS-CoV-2 Spike Protein RBD - Antibody Complexes
Abstract
Computational modeling of protein-protein interactions (PPIs) is a high priority because it is essential for understanding nearly all cellular functions and for addressing the limitations of time-consuming experimental methods. This approach is crucial for drug discovery, as it enables rapid identification of disease targets, the design of therapeutics that modulate PPIs, and the simulation of interactions under realistic, crowded cellular conditions. The SARS-CoV-2 Spike protein's Receptor-Binding Domain (RBD) is the crucial region that directly engages the human ACE2 receptor to initiate infection. Therefore, studying the RBD and its interactions with neutralizing antibodies is paramount for understanding immune protection, assessing the threat posed by viral variants, and guiding the design of effective vaccines and antibody-based therapeutics. Here, we evaluated the performance of several computational tools for modeling complexes between the SARS-CoV-2 Spike protein receptor-binding domain (RBD) and various neutralizing antibodies. Recent breakthroughs in computational chemistry have moved beyond traditional protein-protein docking towards various generative methods and co-folding tools that predict a protein's 3D structure and binding poses from its sequence. Therefore, this motivates us to compare the performance of traditional docking methods, such as pyDockWEB and ClusPro, with that of novel, promising AI-driven tools, such as AlphaFold 3, Boltz-2, Protenix, and Chai-1. All these methods were systematically evaluated for their ability to reproduce the 3D structures of known Spike RBD-antibody complexes. We found that traditional docking tools, such as ClusPro and pyDockWeb, perform well at capturing correct protein-protein interactions for relatively small antibodies with well-defined interaction interfaces, but fall short at reproducing more complex protein-protein assemblies. AlphaFold 3 performs best at reproducing the 3D structures of the five studied RBD-antibody complexes among the four AI-driven prediction tools considered. Our study sheds light on understanding protein-protein interactions and provides a practical guide for accurate modeling of viral Spike protein RBD-antibody interactions.
Downloads
References
McDonnell R. T., Henderson A. N., Elcock A. H. Structure prediction of large rnas with AlphaFold 3 highlights its capabilities and limitations. J. Mol. Biol. 2024, 436 (22), 168816. https://doi.org/10.1016/j.jmb.2024.168816
Kondo H. X., Takano Y. Structure comparison of heme-binding sites in heme protein predicted by AlphaFold 3 and AlphaFold 2. Chem. Lett. 2024, 53 (8), upae148. https://doi.org/10.1093/chemle/upae148
He X.-h., Li J.-r., Shen S.-y., Xu H. E. AlphaFold 3 versus experimental structures: Assessment of the accuracy in ligand-bound G protein-coupled receptors. Acta Pharm. Sinica 2025, 46 1111–1122. https://doi.org/10.1038/s41401-024-01429-y
Binder J. L., Berendzen J., Stevens A. O., He Y., Wang J., Dokholyan N. V., Oprea T. I. AlphaFold illuminates half of the dark human proteins. Curr. Opin. Struct. Biol. 2022, 74 102372. https://doi.org/10.1016/j.sbi.2022.102372
Zhai S., Liu T., Lin S., Li D., Liu H., Yao X., Hou T. Artificial intelligence in peptide-based drug design. Drug Discov. Today 2025, 30 (2), 104300. https://doi.org/10.1016/j.drudis.2025.104300
Duma Y., Kyrychenko A. Benchmarking Google DeepMind’s AlphaFold 3 performance for protein 3D-structure prediction. Kharkiv University Bulletin. Chemical Series 2024, 43, 6-25. https://doi.org/10.26565/2220-637X-2024-43-01
Yevsieieva L. V., Lohachova K. O., Kyrychenko A., Kovalenko S. M., Ivanov V. V., Kalugin O. N. Main and papain-like proteases as prospective targets for pharmacological treatment of coronavirus SARS-CoV-2. RSC Adv. 2023, 13 (50), 35500–35524. https://doi.org/10.1039/d3ra06479d
Chen Y., Zhao X., Zhou H., Zhu H., Jiang S., Wang P. Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses. Nat. Rev. Immunol. 2023, 23 (3), 189-199. https://doi.org/10.1038/s41577-022-00784-3
Du L., Yang Y., Zhang X. Neutralizing antibodies for the prevention and treatment of COVID-19. Cell Mol Immunol 2021, 18 (10), 2293-2306. https://doi.org/10.1038/s41423-021-00752-2
Kozakov D., Hall D. R., Xia B., Porter K. A., Padhorny D., Yueh C., Beglov D., Vajda S. The ClusPro web server for protein–protein docking. Nat. Protocols 2017, 12 (2), 255-278. https://doi.org/10.1038/nprot.2016.169
Brenke R., Hall D. R., Chuang G.-Y., Comeau S. R., Bohnuud T., Beglov D., Schueler-Furman O., Vajda S., Kozakov D. Application of asymmetric statistical potentials to antibody–protein docking. Bioinformatics 2012, 28 (20), 2608-2614. https://doi.org/10.1093/bioinformatics/bts493
Jiménez-García B., Pons C., Fernández-Recio J. Pydockweb: A web server for rigid-body protein–protein docking using electrostatics and desolvation scoring. Bioinformatics 2013, 29 (13), 1698-1699. https://doi.org/10.1093/bioinformatics/btt262
Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A. J., Bambrick J., Bodenstein S. W., Evans D. A., Hung C.-C., O’Neill M., Reiman D., Tunyasuvunakool K., Wu Z., Žemgulytė A., Arvaniti E., Beattie C., Bertolli O., Bridgland A., Cherepanov A., Congreve M., Cowen-Rivers A. I., Cowie A., Figurnov M., Fuchs F. B., Gladman H., Jain R., Khan Y. A., Low C. M. R., Perlin K., Potapenko A., Savy P., Singh S., Stecula A., Thillaisundaram A., Tong C., Yakneen S., Zhong E. D., Zielinski M., Žídek A., Bapst V., Kohli P., Jaderberg M., Hassabis D., Jumper J. M. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630 (8016), 493-500. https://doi.org/10.1038/s41586-024-07487-w
Pei J., Andreeva A., Chuguransky S., Lázaro Pinto B., Paysan-Lafosse T., Dustin Schaeffer R., Bateman A., Cong Q., Grishin N. V. Bridging the gap between sequence and structure classifications of proteins with alphafold models. J. Mol. Biol. 2024, 436 (22), 168764. https://doi.org/10.1016/j.jmb.2024.168764
Zonta F., Pantano S. From sequence to mechanobiology? Promises and challenges for AlphaFold 3. Mechanobiol. Med. 2024, 2 (3), 100083. https://doi.org/10.1016/j.mbm.2024.100083
Weller J. A., Rohs R. Structure-based drug design with a deep hierarchical generative model. J. Chem. Inf. Model. 2024, 64 (16), 6450-6463. https://doi.org/10.1021/acs.jcim.4c01193
Wohlwend J., Corso G., Passaro S., Reveiz M., Leidal K., Swiderski W., Portnoi T., Chinn I., Silterra J., Jaakkola T., Barzilay R. Boltz-1 democratizing biomolecular interaction modeling. bioRxiv 2024, 2024.11.19.624167. https://doi.org/10.1101/2024.11.19.624167
Passaro S., Corso G., Wohlwend J., Reveiz M., Thaler S., Somnath V. R., Getz N., Portnoi T., Roy J., Stark H., Kwabi-Addo D., Beaini D., Jaakkola T., Barzilay R. Boltz-2: Towards accurate and efficient binding affinity prediction. bioRxiv 2025, 2025.06.14.659707. https://doi.org/10.1101/2025.06.14.659707
Chai D., Boitreaud J., Dent J., McPartlon M., Meier J., Reis V., Rogozhnikov A., Wu K. Chai-1: Decoding the molecular interactions of life. bioRxiv 2024, 2024.10.10.615955. https://doi.org/10.1101/2024.10.10.615955
ByteDance A. M. L. A. I. S. T., Chen X., Zhang Y., Lu C., Ma W., Guan J., Gong C., Yang J., Zhang H., Zhang K., Wu S., Zhou K., Yang Y., Liu Z., Wang L., Shi B., Shi S., Xiao W. Protenix - advancing structure prediction through a comprehensive AlphaFold 3 reproduction. bioRxiv 2025, 2025.01.08.631967. https://doi.org/10.1101/2025.01.08.631967
Cofas-Vargas L. F., Mendoza-Espinosa P., Montalvo-Sandoval F. D., Pérez-Rodríguez S., Rauda-Ceja J. A., Hernández‑Peralta P., Durán-Vargas A., Trujillo‑Roldán M. A., Valdez‑Cruz N. A., García‑Hernández E. A unified topology-based classification of SARS-CoV-2 RBD neutralizing antibodies systematizes affinity trends across variants. mAbs 2025, 17 (1), 2575083. https://doi.org/10.1080/19420862.2025.2575083
Yuan M., Wu N. C., Zhu X., Lee C.-C. D., So R. T. Y., Lv H., Mok C. K. P., Wilson I. A. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 2020, 368 (6491), 630-633. https://doi.org/10.1126/science.abb7269
Yuan M., Liu H., Wu N. C., Lee C.-C. D., Zhu X., Zhao F., Huang D., Yu W., Hua Y., Tien H., Rogers T. F., Landais E., Sok D., Jardine J. G., Burton D. R., Wilson I. A. Structural basis of a shared antibody response to SARS-CoV-2. Science 2020, 369 (6507), 1119-1123. https://doi.org/10.1126/science.abd2321
Hurlburt N. K., Seydoux E., Wan Y.-H., Edara V. V., Stuart A. B., Feng J., Suthar M. S., McGuire A. T., Stamatatos L., Pancera M. Structural basis for potent neutralization of SARS-CoV-2 and role of antibody affinity maturation. Nat. Commun. 2020, 11 (1), 5413. https://doi.org/10.1038/s41467-020-19231-9
Yang M., Li J., Huang Z., Li H., Wang Y., Wang X., Kang S., Huang X., Wu C., Liu T., Jia Z., Liang J., Yuan X., He S., Chen X., Zhou Z., Chen Q., Liu S., Li J., Zheng H., Liu X., Li K., Yao X., Lang B., Liu L., Liao H.-X., Chen S. Structural basis of a human neutralizing antibody specific to the SARS-CoV-2 spike protein receptor-binding domain. Microbiology Spectrum 2021, 9 (2), e01352-21. https://doi.org/10.1128/Spectrum.01352-21
Jiang W., Jiang Y., Sun H., Deng T., Yu K., Fang Q., Ge H., Lan M., Lin Y., Fang Z., Zhang Y., Zhou L., Li T., Yu H., Zheng Q., Li S., Xia N., Gu Y. Structural insight into broadening SARS-CoV-2 neutralization by an antibody cocktail harbouring both NTD and RBD potent antibodies. Emerging Microbes & Infections 2024, 13 (1), 2406300. https://doi.org/10.1080/22221751.2024.2406300
Prud M., Kyrychenko A. Studying ligand-protein interactions in the era of artificial intelligence: Benchmarking Boltz-1 for 3D-structure prediction of biomolecular complexes. Kharkiv University Bulletin. Chemical Series 2025, (44(67)), 57-71. https://doi.org/10.26565/2220-637X-2025-44-06
Ivanov V., Lohachova K., Kolesnik Y., Zakharov A., Yevsieieva L., Kyrychenko A., Langer T., Kovalenko S. M., Kalugin O. N. Recent advances in computational drug discovery for therapy against coronavirus SARS-CoV-2. ScienceRise: Pharm. Sci. 2023, 6(46), 4-24. https://doi.org/10.15587/2519-4852.2023.290318
Xia Y., Wang Y., Wang Z., Zhang W. A comprehensive review of molecular optimization in artificial intelligence-based drug discovery. Quantitative Biology 2024, 12, 15-29. https://doi.org/10.1002/qub2.30
Chen W., Liu X., Zhang S., Chen S. Artificial intelligence for drug discovery: Resources, methods, and applications. Mol. Therapy. Nucl. Acids. 2023, 31, 691-702. https://doi.org/10.1016/j.omtn.2023.02.019
Cui J., Yang S., Yi L., Xi Q., Yang D., Zuo Y. Recent advances in deep learning for protein-protein interaction: A review. BioData Mining. 2025, 18 (1), 43. https://doi.org/10.1186/s13040-025-00457-6
Hosseini S., Golding G. B., Ilie L. Component puzzle protein–protein interaction prediction. Briefings in Bioinformatics 2025, 26 (6), bbaf685. https://doi.org/10.1093/bib/bbaf685