Density matrices in the theory of chemical reactions

  • M. V. Bazilevsky
  • A. V. Odinokov
Keywords: charge transfer, phonon spectrum, local mode, relaxation in the condensed phase

Abstract

Charge transfer reactions in condensed phase are considered with a special emphasis on the density matrix technique invoked as a working tool. The standard theory of a CT in polar liquids (Marcus, Levich, Dogonadze, Jortner et al) is briefly sketched. The original model of a solid-phase CT reaction which applies the approximation of a single local mode interacting with the phonon spectrum of its environment is discussed based on the recent work developed in our group. We demonstrate that the convergence problems arising when the Fermi golden rule approximation is applied to treat kinetics of reacting CT systems involving local modes are safely avoided when the rate computation is systematically shifted down to the lower complex-time half-plane. Starting from this idea, the efficient algorithm of the rate calculation is elaborated.

Downloads

Download data is not yet available.

References

R. McWeeny, D.T. Sutcliffe, Methods of Molecular Quantum Mechanics (Academic Press, London and New York, 1969).

M.M. Mestechkin, Metod matricy' plotnosti v teorii molekul (Naukova Dumka, Kiev, 1977).

I. V. Aleksandrov, Teoriya magnitnoy relaksacii (Nauka, Moskva, 1975).

K.M. Salikhov, Y.N. Molin, R.Z. Sagdeev, A.L. Buchachenko, Spin Polarization and Mag-netic Effects in Radical Reactions (Elsevier, New York, 1984).

A.I. Burshteyn, Lekcii po kursu «Kvantovaya kinetika», chasti 1 i 2 (Novosibirskiy univer-sitet, Novosibirsk, 1968).

R.P. Feynman, F.L. Vernon, Ann. Phys. (N.Y.), 24, 118 (1963).

U. Weiss, Quantum Dissipative Systems. Second Edition (World Scientific, Singapore, 1999).

A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Gard, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).

R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGrow-Hill, New York, 1965).

R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, Oxford, 2001).

F. Bloch, Phys. Rev. 105, 1206 (1957).

P.S. Hubbard, Rev. Mod. Phys. 33, 249 (1961).

R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II. Nonequilibrium Statistical Mechan-ics (Springer Verlag, Berlin, 1985).

A.G. Redfield, IBM J. Research Develop. 1, 19 (1957).

W. Pollard, A.K. Felts, R.A. Friesner, Adv. Chem. Phys. 93, 77 (1996).

R. Feynmann, Statistical Mechanics (Benjamin, Massachusets, 1972).

R. Kubo, Y. Toyozava, Prog. Theor. Phys. 13, 160 (1955).

Yu.E. Perlin, Uspehi fiz. nauk 80, 553 (1963).

G. Lang, E. Palladino, U. Weiss, Chem. Phys. 244, 111 (1999).

H. Grabert, P. Schramm, G.L. Ingold, Phys. Rep. 168, 115 (1988).

G. Lang, E. Palladino, U. Weiss, Chem. Phys. 244, 111 (1999).

S. Jang, M.D. Newton, J. Phys. Chem. B 110, 18996 (2006).

R.A. Marcus, N. Sutin, Biochim. Biophys. Acta 811, 265 (1985).

R.A. Marcus, J.Chem.Phys. 24, 966 (1956).

R.A. Marcus, J.Chem.Phys. 43, 679 (1965).

V.G. Levich, R.R. Dogonadze, Doklady Akad. Nauk SSSR, Ser. Fiz.Chim. 124, 123 (1959).

V.G. Levich, R.R. Dogonadze, Coll. Chem. Commun. 26, 193 (1961).

M. Bixon, J. Jortner, Adv. Chem. Phys. 105, 35 (1999).

R.R. Dogonadze, A.M. Kuznetsov, M.A. Vorotyntsev, Phys. Stat. Solidi B 54, 125 (1972).

R.R. Dogonadze, A.M. Kuznetsov, M.A. Vorotyntsev, Phys. Stat. Solidi B 54, 425 (1972).

R.R. Dogonadze, E.M. Itskovich, A.M. Kuznetsov, M.A. Vorotyntsev, J. Phys. Chem. 79, 2827 (1975).

R.R. Dogonadze, A.M. Kuznetsov, M.A. Vorotyntsev, M.G. Zaqaraia, J. Electroanal. Chem. 75, 315 (1977).

N.R. Kestner, J. Logan, J. Jortner, J. Phys. Chem. 78, 2148 (1974).

J. Ulstrup, J. Jortner, J. Chem. Phys. 63, 4358 (1975).

J. Jortner, J. Chem. Phys. 64, 4860 (1976).

U. Weiss, M. Sassetti, in Activated Barrier Crossing (G. Fleming and P. Hanggi Eds., 1993).

P.S. Riseborough, P. Hanggi, E. Freidkin, Phys. Rev. A 32, 489 (1985).

D. Waxmann, J. Phys. C: Solid State Physics 18, L421 (1985).

U. Weiss, H. Grabert, P. Hanggi, P. Risenborough, Phys. Rev. B 35, 9535 (1987).

V.I. Goldanski, L.I. Trakhtenberg, V.N. Flerov, Tunneling Phenomena in Chemical Physics (Gordon and Breach, New York, 1989).

M.V. Basilevsky, G.V. Davidovich, S.V. Titov, A.I. Voronin, J. Chem. Phys. 125, 194513 (2006).

M.V. Basilevsky, G.V. Davidovich, A.I. Voronin, J. Chem. Phys. 125, 194514 (2006).

M.V. Basilevsky, A.V. Odinokov, S.V. Titov, J. Chem. Phys., в печати.

L.D. Landau, E.M. Lifshitz, Statisticheskaya fizika, chast' 1 (Nauka, Moskva, 1976).

H.M. Nussenzweig, Causality and Dispersion Relations (Academic Press, New York, 1972).

E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2-nd Ed. (Oxford University Press, London, 1948).

Organic Electronics (Ed. H. Klauk, Wiley-VCH, Berlin, 2006).

Organic Photovoltaics (Ed. C. Brabec, U. Scherf, V. Dyakonov, Wiley-VCH, Berlin, 2008).

Organic Semiconductors in Sensor Applications (Ed. D.A. Bernards, R.M. Owens, G.G. Mal-liaras, Springer, Berlin, 2008).

H. Bässler, E.V. Emelianova, Adv. Polym. Sci. 223, 1 (2010).

V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Oliver, R. Silbey, J.-L. Brédas, Chem. Rev. 107, 926 (2007).

A.Troisi, Adv. Plym. Sci. 223, 259 (2010).

V. Rühle, A. Lukyanov, F. May, M. Schrader, T. Verhoff, J. Kirkpatrick, B. Baumeier, D. Andrienko, J. Chem. Theor. Comput. 7, 3335 (2011).

Published
2012-12-03
Cited
How to Cite
Bazilevsky, M. V., & Odinokov, A. V. (2012). Density matrices in the theory of chemical reactions. Kharkiv University Bulletin. Chemical Series, (21), 46-58. https://doi.org/10.26565/2220-637X-2012-21-02