Electrostatics of ionic and moleсular ideal crystals

  • Michael M. Mestechkin V.N. Karazin Kharkiv National University
Keywords: hyperpolarizability, nonlinear susceptibility, Lorentz tensor, Madelung potential, reaction field theory and time-dependent Hartree-Fock approach

Abstract

Short review and some new results on nonlinear optical and polarization characteristics of ionic and molecular crystals are presented. The Bloembergen-Armstrong formula for the first nonlinear susceptibility (NS) of a molecular crystal in terms of constituting molecules hyperpolarizabilities (HP) is generalized to an arbitrary order of nonlinearity and expressed in the same terms as the original one. The HP dispersion is accounted. The graphic technique is employed. NS is expressed through HP of all orders not exceeding that of NS. The diagrams are built of root trees graphs. Each tree corresponds to a term of NS expansion which is a product of HP with frequency-arguments and ranks determined by the peculiarities of the corresponding tree. The integer coefficient at the product is also defined by the tree structure.

The methods of the Lorentz tensor and Madelung potential are described in detail for molecular and ion crystals of various types. This approach is based on expansions over McDonald function of increasing arguments. The examples of calculations of both quantities in various ionic and molecular crystals and their layers are given. The obtained values of electric field gradient, refraction index, electric permittivity in bulk, surface and lone layers, and found linear interrilations between ionic local potentials and their formal charges etc. are used for comparison with the experiment and description of other specific properties of crystals.

The Lorentz formula of the phenomenological reaction field theory is derived from the microscopic time-dependent Hartree-Fock HP equations for conjugated hydrocarbons. The Madelung polarization potential is included in an approximate form of oscillator potential with the Lorentz tensor as the force constants matrix. The Hartree-Fock equations for the optical polarizability (PL) with this Madelung correction are solved without further approximations. The solution can be put in the form of the Lorentz interrelation between the PL of molecule in crystal and the free molecule PL.

Downloads

Download data is not yet available.

References

Born, M. Proc. Roy. Soc. 1934, A143, 410-437; Born, M.; Infeld, L. ibid, A144, 425.

Mayer-Geoppert, M. Naturw. 1929, 77, 932-945; Ann. Phys., 1931, 9, 273.

Heitler, W. Quantum theory of radiation; Clarendon Press: Oxford, 1936, pp.430.

Avetissian, H.K. Relativistic nonlinear electrodynamics; Springer: N.Y., 2006, pp.334.

Puri, R. Mathematical methods of quantum optics; Springer-Verlag: Berlin, 2001, pp.285.

Bloembergen, N. Nonlinear optics; W.A. Benjamin Inc.: N.Y., 1965, pp. 222.

Hohlov, R. V; Ahmanov, S. A. Problemy' nelineynoy optiki; Nauka: M., 1964 str.247.

Lalanne, J.; Ducasse, A.; Kielich, S. Laser-molecule interaction; John Wiley Sons Inc., N.Y., 1996, pp.324.

He, G.S.; Liu, S.H. Physics of nonlinear optics; World Science: Singapore, 1999, pp.552.

Molecular Nonlinear Optics: Materials, Physics, Devices; Chemla, D.; Zyss, J.; Eds.; Acad., Boston, 1993.

Principles, applications of nonlinear optical materials; Munn, R.; Ironside, C.; Eds.; Blackie Acad., 1993.

Armstrong, J.A.; Bloembergen N.; Ducuing, J.; Pershan P.S. Phys. Rev. 1962, 127, 1918.

Hurst, M.; Munn, R. W. J. Mol. Electr. 1986, 2, 39; idid 103.

Malagoli, M.; Munn, R.W. J. Chem. Phys. 1997, 107, 7926.

Winterfeldt, C., Spielmann, C.; Gerber, G. Rev.Mod.Phys. 2008, 80, 117.

Spielmann, C.; Burnet, B.H., Sartania, S. et al Science 1997, 278, 661.

Lewnstein, P. Balcou, Ivanov, M. et al Phys.Rev.A 1994, 2117.

Munn, R.W. Mol. Phys. 1988, 64, 1-20.

Mestechkin, M. M. J Ph. Ch. Ref. Data. 2000, 29, 571.

Mestechkin, M. M. 2004 Solid State Science, 6, 769.

Ashwell, G.J.; Jackson, P.D.; Crossland, W.A et al Nature 1992, 357, 393; ibid. 1994, 368, 438.

Mestechkin, M. M. Opt. Comm. 2001, 198, 199-206; ibid 2007, 273, 564.

Mestechkin, M. M. JCMSE. 2008, 8, 343.

Mestechkin, M. M.; Whyman, G. E. Opt. Comm. 1994, 109, 410.

Mestechkin, M. M. JCMSE. 2008, 8, 71.

Riordan, J. Introduction to combinatorial analysis; John Wiley Sons Inc.: N.Y., 1958, pp.287.

Riordan, J. Combinatorial identities, 1968, pp.255; John Wiley Sons Inc., N.Y., 1968, pp.255.

Brouder, C.; Mestre, A.; Patras. F. J. Math. Phys. 2010, 51, 072104.

Evald, Р.Р. Ann.Phys.Lpz. 1921, 64, 253.

Madelung, E. Z. Phys. 1918. 19, 524.

Born, M. Z. Phys. 1921, 124, 7; Born M., Gеoppert-Mayer, M. Handb. Phys. 24, 708.

Luzanov, A. V. Kharkiv Univ. Bullet. 2012, 1026, 59.

Tosi, M.P. Solid State Phys. 1964, 16, 1.

Sherman, J. Chem. Revs. 1932, 11, 93.

Kittel, C. Introduction to solid state physics; John Wiley Sons Inc., N.Y., 1956, pp.571.

Huag, А. Theoretical Solid State Physics; Pergamon Press, N.Y., 1972, pp.587.

Pavinskiy, P. P. Vvedenie v teoriyu tve'rdogo tela; LGU, Leningrad, 1979, str. 372.

Torrance, J.B.; Metzger, R.M. et al J. Solid State Chem. 1991, 90, 168; Physica C, 1991, 182, 351.

O’Keeffe, M.J. J. Solid State Chem. 1991, 85, 108.

Fleming, R.M.; Rosseinsky, M.J.; Ramirez A.P. et al. Nature 1991, 352, 701.

Li, J.; Liu, H.L.; Ladik, J. Chem. Phys. Lett. 1994, 230, 414.

Metzger, R.M. J. Chem. Phys. 1972, 57, 1870; idid 1976, 64, 2069.

Ragavendran, K.; Vasudevan, D.; Veluchamy, A. еt al. J. Phys. Chem. B. 2004, 108, 16899.

Hummer, G. Chem. Phys. Lett. 1995, 235, 297.

York, D.; Jang, W. 1994, J. Chem. Phys. 101, 3298.

Nymand, T.M.; Linse P. J. Chem. Phys. 2000, 112, 6152.

Jonson, Q.C.; Templeton, D.H. J.Chem.Phys. 1961, 34, 2004.

Sakamoto, J. J. Chem. Phys. 1958, 28, 164.

Hartman, P. Acta Cryst. 1958, 11, 365.

Adrian, F.J. Phys. Rev. 1988, B 37, 2326; ibid B 38, 2426.

Evjen, H.M. Phys. Rev. 1932, 39, 675.

Dahl J.P. Phys. Chem. Solids.1965, 26, 33.

Kuznecov D.S. Special'ny'e funkcii, Vy'sshaya shkola, M, 1965 str.423.

Gradshteyn, I.S.; Ry'jik I.M. Tablicy' integralov, summ, ryadov i proizvedeniy, FM, M, 1962, s.1100.

Mestechkin, М.М.; Gutyrya, L.S. J. Phys.: Condens. Matter. 1993, 5, 6683.

Kleber, W.N. Ib. Min. Geol. Paleont. 1939, A75, 72.

Herzfeld, K.F. Z.Phys. Chem. (Frankfurt). 1923, 105, 329.

Hund, F. Z. Phys. 1935, 94, 11.

Benson, G.C.; van Zeggeren, F. J. Chem. Phys. 1957, 26, 1083.

Lennard-Jones, J.E.; Dent, B.M. Phil. Mag. 1927, 3, 1204.

Holopov, E. V. UFN 2004, 174, 1033; JSH 2011, 52, 15.

Mestechkin, M. M.; Vul'fov, A. L. Opt. i spektr. 2006, 100, 59.

Handbook of Mathematical Functions, Eds. Abramovitz M.; Stegun I.A. Dover Publ., NY, 1972.

Crandal, R.E. Exp. Math.1999, 8, 367.

Glasser, M.L. J.Math.Phys.1973, 14, 409, ibid 701.

Hajj, F.Y. J. Chem. Phys. 1972, 56, 891.

Kukhtin, W.; Shramko, O.V. Phys. Lett. 1991, A156, 257; J. Phys. A. Math.Gen.1993, 26, L963.

Crandal, R.E.; Delord, J.F. J. Phys. A. Math. Gen.1987, 20, 2279.

Magnus, W.; Oberhettinger, F. Formeln Sätze speziellen Funktionen mathematischen Physik, Springer-Verlag: Heidelberg, 1948.

Magnus, W.; Oberhettinger, F. Formulas and theorems for the special functions of mathemati-cal physics. Chelsea, NY, 1949.

Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and theorems for the special functions of mathematical physics. Springer-Verlag, NY, 1966.

Sperb, R. Mol. Simul. 1998, 20, 179; ibid 1999, 22, 199; ibid 2001, 27, 61.

Lekner, J. Mol. Simul. 1998, 20, 357.

Erdelyi, A; Magnus, W.; Oberhettinger, F. Tricomi, F.G. Tables of integral transforms.1954, McGraw-Hill.

Hylleraas, E.A. Z. Phys. 1927, 44, 871.

Mestechkin,M.M.; Vayman G.E. JSH. 1997, 38,1122.

Mestechkin, M.M.; Whyman, G.E. Mol. Mater. C. 1996, 8, 161.

Mestechkin, M.M.; Whyman, G.E. Соmputing Letters. 2008, 4, 73.

Swami, N.; You, Y.; Tompson, M.E.; Koel, B. E. J. Appl.Phys. 1999, 85, 3696; J.Vac.Sci.Tech. 1998, 16, 2395.

Mestechkin, М. J. Phys.:Cond. Matt. 1997, 9, 157.

Kelires, P.C.; Das, T.P. Hyperfine Interact.1987, 34, 285.

Heifits, E.; Goddard III, W.A.; Kotomin, E.A.; et al. Phys.Rev. 2004, B69, 035408.

Kornfeld, H. Z.Phys. 1924, 22, 27.

McKeehan, L.W. Phys. Rev. 1933, 43, 913; ibid 72 (1947), 78.

Lutinger, J.M.; Tisza, L. Phys. Rev. 1946, 70, 954; ibid 1947, 72, 257.

de Wette, F.W.; Schacher G.E. Phys.Rev. 1965, 137, A78.

Philpott, M.R.; Sherman, P.G. Phys.Rev. 1975, B12, 5381.

Munn, R.W.; Shabat M.M. Organic materials for nonlinear optics, 137,1993, 3. 25. Publ. RSC.

Cummins, P.G.; Dummur, D.A.; Munn, R.G.; Newham, R. G. Acta Cryst. 1976, A32, 847.

Mestechkin, М.; Whyman, G.; Klimko G. Mol.Phys. 1994, 82, 1079.

Mestechkin, M. M. J. Phys.:Cond. Matt. 1995, 7, 611.

Shannon, R. D. J. Appl. Phys., 1993, 73, 348.

Handbook of Chemistry and Physics, 82 ed; Chemical Rubber Corp., Boca Raton, FL, 2001.

Kingon, A. I.; Maria, J.-P; Streifer, S.K. Nature 2000, 406, 1032.

Campbell, S.A. IEEE Trans. Electron Devices. 1997, 44, 104.

Cheng, C. L.; Murphy, D. S.; Ritchie, D. R. Austr.J.Chem., 1972, 25, 130.

Vuks, M. F. Opt. i spektr. 1966, 20, 361.

Philpott, M. R. J. Chem. Phys. 1973, 58, 588.

Munn, R.W.; Shabat, M.M.; Mothersdale, S.E. Organic materials for nonlinear optics. 91, 1991, 34. Publ. RSC.

Mestechkin, M.M. Соmputing Letters. 2007, 3, 301.

Published
2012-12-03
Cited
How to Cite
Mestechkin, M. M. (2012). Electrostatics of ionic and moleсular ideal crystals. Kharkiv University Bulletin. Chemical Series, (21), 9-45. https://doi.org/10.26565/2220-637X-2012-21-01