Interparticle interactions in mixtures of [BmIm][PF6] with γ-butyrolactone

Keywords: 1-butyl-3-methylimidazolium hexafluorophosphate, γ-butyrolactone, Raman spectra, quantum-chemical calculations, interparticle interactions

Abstract

Intermolecular and ion-molecular interactions in binary mixtures of 1-butyl-3-methylimidazolium hexafluorophosphate, [BmIm][PF6], with γ-butyrolactone, γ-BL, were studied using Raman spectroscopy combined with quantum-chemical techniques. It was established that Raman spectra in the region of C=O group stretching vibrations (~1770 cm–1) depending on the concentration could be modeled with two or three contributions which are related to the vibrations of the solvent molecule monomers and dimers, as well as to the molecules solvating cation of the ionic liquid. The results of analysis in the region of C-H stretching vibrations of the imidazolium ring of [BmIm]+ cation (~3000-3200 cm–1) point out the absence of significant concentration-induced changes in the positions of individual bands. This finding can be interpreted in terms of competing interaction of the corresponding hydrogen atoms with [PF6] anion and with carbonyl group of the solvent molecule.

Downloads

Download data is not yet available.

References

Vygodskiy Ya. S., Lozinskaya Ye. I, Shaplov A. S. // Ros. khim. zh. (Zh. Ros. khim. ob-va im. D. I. Mendeleyeva) – 2004. – Vol. XLVIII, № 6. – P. 40-50. [http://www.chem.msu.su/rus/jvho/2004-6/40.pdf] [in Russian]

Kustov L. M., Vasina T. V., Ksenofontov B. A. // Ros. khim. zh. (Zh. Ros. khim. ob-va im. D. I. Mendeleyeva) – 2004. – Vol. XLVIII, № 6. – P. 13-35. [http://www.chem.msu.su/rus/jvho/2004-6/13.pdf] [in Russian]

Hallett J. P., Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. 2. // Chem. Rev. – 2011. – Vol. 111. No. 5. – P.3508-3576.

Enders F., Zein El Abedin S. Air and water stable ionic liquids in physical chemistry // Phys. Chem. Chem. Phys. – 2006. – Vol. 8. No. 18. – P. 2101-2116.

Galiński M., Lewandowaski A., Stepniak I. Ionic liquids as electrolytes // Electrochim. Acta. – 2006. – Vol. 51. No. 26. – P. 5567-5580.

Marsh K. N., Boxall J. A., Lichtenthaler R. Room temperature ionic liquids and their mixtures – a review // Fluid Phase Equil. – 2004. – Vol. 219. No. 1. – P. 93-98.

Ionic liquids as green solvents. Progress and prospects [ed.: R. D. Rogers, K. R. Seddon]. – Washington, DC: American Chemical Society, 2003. – 616 p.

Martins M. A. P., Frizzo C. P., Moreira D. N., Zanatta N., Bonacorso H. G. Ionic liquids in heterocyclic synthesis // Chem. Rev. – 2008. – Vol. 108, No. 6. – P. 2015-2050.

Ionic liquids in synthesis/ [ed.: T. Welton, P. Wasserscheid, 2nd ed.] − Weinheim: VCH-Wiley, 2007. – 776 p.

Liu Q., Janssen M. H. A., van Rantwijk F., Sheldon R. A. Room-temperature ionic liquids that dissolve carbohydrates in high concentrations // Green Chem. – 2005. – Vol. 7, No. 1. – P. 39-42.

Jacquemim J., Husson P., Padua A. A. H., Majer V. Density and viscosity of several pure and water-saturated ionic liquids // Green Chem. – 2006. – Vol. 8. No. 2. – P. 172-180.

Marekha B. A., Kalugin O. N., Idrissi A., Bria M. // Visn. Khark. nac. univ. – 2012. – № 1026. Ser. Him. Iss. 21 (44). – P. 134-146. [ISSN 2220-6371026 (print), ISSN 2220-6396 (online), http://chembull.univer.kharkov.ua/archiv/2012/11.pdf] [in Russian]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. J., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Far-kas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, Revision B.01. 2010.

Hesse S., Suhn M. A. On the low volatility of cyclic esters: an infrared spectroscopy compari-son between dimers of γ-butyrolactone and methyl propionate // Phys. Chem. Chem. Phys. – 2009. – Vol. 11. No. 47. – P. 11157-11170.

Aparicio S., Alcalde R. Characterization of two lactones in liquid phase: an experimental and computational approach // Phys. Chem. Chem. Phys. – 2009. – Vol. 11. No. 30. – P. 6455-6467.

Marsia M., Rey R. Computational study of γ-butyrolactone and Li+/γ-butyrolactone in gas and liquid phases // J. Phys. Chem. B. – 2004. – Vol. 108. No. 46. – P. 17992-18002.

McDermott D. P. Vibrational assignments and normal-coordinate analyses of γ-butyrolactone and 2-pyrrolidinones // J. Phys. Chem. – 1986. – Vol. 90. No. 12. – P. 2559-2574.

Ikezawa Y., Atobe K. In situ FTIR spectra at the Pt electrode/ γ-butyrolactone solution inter-face // Electrochimica Acta. – 2011. – Vol. 56. No. 20. – P. 7078-7083.

Jensson P. A. Deconvolution with application in spectroscopy. – London: Academic Press., 1984. – 245 p.

Wong M. W. Vibrational frequency prediction using density functional theory // Chem. Phys. Lett. – 1996. – Vol. 256. No. 4-5. – P. 391-399.

Scott A. P., Radom L. Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Møller-Plesset, quadratic configuration interaction interaction, density functional theory, and semiepmirical scale factors // J. Phys. Chem. – 1996. – Vol. 100. No. 41. – P. 16502-16513.

Wong M. W., Wiberg K. B., Frisch M. J. Solvent effects. 3. Tautomeric equilibria of forma-mide 2-pyridone in gas phase and solution. An ab initio SCRF study // J. Am. Chem. Soc. – 1992. – Vol. 114. No. 5. – P. 1645-1652.

Foresman J. B., Keith T. A., Wiberg K. B., Snoonian J., Frisch M. J. Solvent effects 5. The in-fluence of cavity shape, truncation of electrostatics, and electron Correlation on ab initio reac-tion field calculations // J. Phys. Chem. – 1996. – Vol. 100. No. 40. – P. 16098-16104.

Zhao Y., Truhlar D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals // Theor. Chem. Acc. – 2007. – Vol. 120. No. 1-3. – P. 215-241.

Wang J., Xuan X., Lu J., Pei N., Mo Y. A Vibrational spectroscopic study of ion solvation and association in lithium perchlorate/γ-butyrolactone electrolyte // Zeitschrift fur Physikalische Chemie. – 2001. – Vol. 215. No. 4. – P. 437-446.

Breneman C. M., Wiberg K. B. Determining atom-centered monopoles from molecular elec-trostatic potentials. The need for high sampling density in formamide conformational analysis // J. Comput. Chem. – 1990. – Vol. 11, No. 3. – P. 361-373.

Berg R. W. Raman spectroscopy and ab-initio model calculations on ionic liquids // Monatshefte für Chemie. – 2007. – Vol. 138. No. 1045. –P. 1045-1075.

Talaty E. R., Raja S., Storhaug V. J., Dölle A., Carper W. R. Raman and infrared spectra and ab initio calculations of C2–4MIM imidazolium hexafluorophosphate ionic liquids/ // J. Phys. Chem. B. – 2004. – Vol. 108. No. 35. – P. 13177-13184.

Jeon Y., Sung J., Seo C., Lim H., Cheong H., Kang M., Moon B., Ouchi Y., Kim D. Struc-tures of ionic liquids with different anions studied by infrared vibration spectroscopy // J. Phys. Chem. B. – 2008. Vol. 112. No. 15. – P. 4735-4740.

Bonhôte P., Dias A.-P., Papageorgiou N., Kalyanasundaram K., Grätzel M. Hydrophobic, highly conductive ambient-temperature molten salts // Inorg. Chem. – 1996. – Vol. 35. No. 5. – P. 1168-1178.

Consorti C. S., Suarez P. A. Z., de Souza R. F., Burrow R. A., Farrar D. H., Lough A. J., Loh W., da Silva L. H. M., Dupon J. Identification of 1,3-dialkylimidazolium salt supramolecular aggregates in solution // J. Phys. Chem. B. – 2005. – Vol. 109, Iss. 10, – P. 4341-4349.

Avent A. G., Chaloner P.A., Day M.P., Seddon K. R., Welton T. Evidence for hydrogen bond-ing in solutions of 1-ethyl-3-methylimidazolium halides, and its implications for room-temperature halogenoaluminate(III) ionic liquids // J. Phys. Chem. B. – 2006. – Vol. 110. No. 39. – P. 19593-19600.

Katsyuba S. A., Zvereva E. E., Vidiš A., Dyson P. Application of density functional theory and vibrational spectroscopy toward the rational design of ionic liquids // J. Phys. Chem. A. – 2007. – Vol. 111. No. 2. – P. 352-370.

Heimer N. E., Del Sesto R. E., Meng Z., Wilkes J. S., Carper W. R. Vibrational spectra of imidazolium tetraftorborate ionic liquids // J. Mol. Liq. – 2006. – Vol. 124. No. 1-3. – P. 84-95.

Holomb R., Martinelli A., Albinsson I., Lassegues J. C., Johansson P., Jacobsson P. Ionic liq-uid structure: the conformational isomerism in 1-butyl-3-methyl-imidazolium tetrafluorobo-rate ([bmim][BF4]) // J. Raman Spectrosc. – 2008. – Vol. 39. No, 7. – P. 793-805.

Published
2013-12-20
Cited
How to Cite
Koverga, V. A., Marekha, B. A., Kalugin, O. N., & Idrissi, A. (2013). Interparticle interactions in mixtures of [BmIm][PF6] with γ-butyrolactone. Kharkiv University Bulletin. Chemical Series, (22), 86-98. https://doi.org/10.26565/2220-637X-2013-22-10