Influence of the ionic and non-ionic additives on the acid strength of neutral red in the aqueous solutions of poly (sodium 4-styrenesulfonate)
Abstract
Polyions of poly (sodium 4-styrenesulfonate) in aqueous solution may be considered as colloidal pseudophase. Analogously to micelles, some species can be bind by the charged polyelectrolyte coils. In this paper, the colored acid-base indicator dyes were used for studying the penetration of ionic and non-ionic solution components in polyelectrolyte coils. Such analysis relies on alteration of the acid strength of dyes. The aim of this work was to determine the dependences of the apparent ionization constants of neutral red, Kaapp, on the ionic strength of solution, I, in different mixed systems containing poly (sodium 4-styrenesulfonate) (NaPSS) and tetraethylammonium bromide, tetra-n-butylammonium iodide, or 1-butanol with NaCl. Neutral red is fixed in the polyelectrolyte coils due to electrostatic and hydrophobic interactions. The polyelectrolyte : dye concentration ratio, P : D, an important parameter for spectophotometrical measurements, equals 100. It was found that tetra-n-alkylammonium salts display a stronger influence on the acid strength of neutral red as compared with that of NaCl. For instance, in the case of tetraethylammonium bromide pKaapp = 7.90 ± 0.07 at I = 0.02 M whereas pKaapp = 8.45 ± 0.04 with NaCl at the same ionic strength. It can be explained by specifical adsorption tetra-n-alkylammonium cations on polyions ‘surface’. Introduction of 1-butanol significantly increases the acid strength of neutral red too, however its influence isn’t monotonic with change of ionic strength. The dependences of pKaapp on log I were discussed in terms of regularities which are well-known for surfactant micellar systems. All mentioned systems were also examined by dynamic light scattering measurements using Zetasizer Nano ZS Malvern Instruments apparatus. As it turned out, when the ionic strength is 3×10–3 М or more the size (by number) of polyions in the presence of NaCl is of about 7 nm. Introduction of the additives results in somewhat higher size: in the case of 1-butanol the size of NaPSS is 10 nm.
Downloads
References
J. Y. Teo, W. Chin, X. Ke, S. Gao, S. Liu, W. Cheng, J. L. Hedrick, Y. Y. Yang, pH and redox dual-responsive biodegradable polymeric micelles with high drug loading for effective anti-cancer drug delivery, Nanomedicine: NBM 13 431-442, doi:10.1016/j.nano.2016.09.016
J. H. Hamman, Chitosan Based Polyelectrolyte Complexes as Potential Carrier Materials in Drug Delivery Systems, Marine Drugs 8 (2010) 1305.
B. Bolto, J. Gregory, Organic polyelectrolytes in water treatment, Water Research 41 (2007) 2301-2324, doi:10.1016/j.watres.2007.03.012
A. Y. Kharchenko, N. N. Kamneva, N. O. Mchedlov-Petrossyan, The properties and composi-tion of the SDS – 1-butanol mixed micelles as determined via acid-base indicators, Colloids Surf., A 507 (2016) 243-254, doi:10.1016/j.colsurfa.2016.08.004
H. Høiland, E. Ljosland, S. Backlund, Solubilization of alcohols and alkanes in aqueous solution of sodium dodecyl sulfate, J. Colloid Interface Sci. 101 (1984) 467-471, doi:10.1016/0021-9797(84)90058-4
N. Mchedlov-Petrossyan, A. Pulyaeva, The sodium/alkyl-ammonium ion exchange at the micellar surface of dodecyl sulfate micelles as studied with the help of pKa-probes, Funct. Mater. 2 (1995) 530-531.
K. Gunaseelan, K. Ismail, Estimation of micellization parameters of sodium dodecyl sulfate in water+1-butanol using the mixed electrolyte model for molar conductance, J. Colloid Interface Sci. 258 (2003) 110-115, doi:10.1016/S0021-9797(02)00065-6
G. V. Hartland, F. Grieser, L. R. White, Surface potential measurements in pentanol-sodium dodecyl sulphate micelles, J. Chem. Soc. Faraday Trans. 1 83 (1987) 591-613, doi:10.1039/F19878300591
C. J. Drummond, F. Grieser, T. W. Healy, Acid-base equilibria in aqueous micellar solutions. Part 3.-Azine derivatives, J. Chem. Soc. Faraday Trans. 1 85 (1989) 551-560, doi:10.1039/F19898500551
N. O. Mchedlov-Petrossyan, Protolytic equilibrium in lyophilic nanosized dispersions: Differentiating influence of the pseudophase and salt effects, Pure Appl. Chem. 80 (2008) 1459, doi:10.1351/pac200880071459
D. Wang, X. Gong, P. S. Heeger, F. Rininsland, G. C. Bazan, A. J. Heeger, Biosensors from conjugated polyelectrolyte complexes, Proc. Natl. Acad. Sci. USA 99 (2002) 49-53, doi:10.1073/pnas.012581399
L. I. Kazakova, L. I. Shabarchina, S. Anastasova, A. M. Pavlov, P. Vadgama, A. G. Skirtach, G. B. Sukhorukov, Chemosensors and biosensors based on polyelectrolyte microcapsules con-taining fluorescent dyes and enzymes, Anal. Bioanal. Chem. 405 (2013) 1559-1568, doi:10.1007/s00216-012-6381-0
D. Horn, C.-C. Heuck, Charge determination of proteins with polyelectrolyte titration, J. Bio. Chem. 258 (1983) 1665-1670.
E. Baumgartner, R. Fernandez-Prini, D. Turyn, Change of apparent acidity constant of indica-tors in polyelectrolyte solutions, J. Chem. Soc. Faraday Trans. 1 70 (1974) 1518-1526, doi:10.1039/F19747001518
K. Tamaki, A. Tsuchiya, The solubilization of Orange OT in aqueous solutions of alkyl-substituted ammonium salts of polystyrenesulfonic acid, Kolloid-Zeitschrift und Zeitschrift für Polymere 200 (1964) 34-37, doi:10.1007/bf01499432
C. Bravo, J. R. Leis, M. E. Pena, Effect of alcohols on catalysis by dodecyl sulfate micelles, J. Phys. Chem. 96 (1992) 1957-1961, doi:10.1021/j100183a077
D. A. R. Rubio, D. Zanette, F. Nome, C. A. Bunton, Effect of 1-Butanol on Micellization of Sodium Dodecyl Sulfate and on Fluorescence Quenching by Bromide Ion, Langmuir 10 (1994) 1151-1154, doi:10.1021/la00016a030
L. P. Loginova, E. Y. Yakovleva, M. N. Galat, A. P. Boichenko, Effect of aliphatic alcohols and aliphatic carboxylic acids on the critical micelle concentration and counter-ion binding degree of sodium dodecylsulfate, Jour. Moll. Liq. 145 (2009) 177-181, doi:10.1016/j.molliq.2008.05.009
J. F. Rathman, J. F. Scamehorn, Counterion binding on mixed micelles: effect of surfactant structure, Langmuir 3 (1987) 372-377, doi:10.1021/la00075a017
P. Mukerjee, K. Banerjee, A Study of the Surface pH of Micelles Using Solubilized Indicator Dyes, J. Phys. Chem. 68 (1964) 3567-3574, doi:10.1021/j100794a022
U. Böhme, U. Scheler, Counterion condensation and effective charge of poly(styrenesulfonate), Adv. Colloid Interface Sci. 158 (2010) 63-67, doi:10.1016/j.cis.2010.02.010
F. Boué, M. Rawiso, J. Combet, C. Rochas, S. Hoffmann, Structure of Polyelectrolytes with Mixed of Monovalent and Divalent Counterions: Poisson-Boltzmann Analysis and SAXS Measurements, Macromolecules 44 (2011) 3039-3052, doi:10.1021/ma102226v
B. L. Rivas, I. Moreno-Villoslada, Binding of Cd2+ and Na+ Ions by Poly(sodium 4-styrenesulfonate) Analyzed by Ultrafiltration and Its Relation with the Counterion Conden-sation Theory, J. Phys. Chem. B 102 (1998) 6994-6999, doi:10.1021/jp980941m
G. S. Manning, Counterion binding in polyelectrolyte theory, Acc. Chem. Res. 12 (1979) 443-449, doi:10.1021/ar50144a004
A. V. Dobrynin, M. Rubinstein, Theory of polyelectrolytes in solutions and at surfaces, Prog. Polym. Sci. 30 (2005) 1049-1118, doi:10.1016/j.progpolymsci.2005.07.006
S. P. Moulik, B. K. Paul, D. C. Mukherjee, Acid-Base Behavior of Neutral Red in Compart-mentalized Liquids (Micelles and Microemulsions), J. Colloid Interface Sci. 161 (1993) 72-82, doi:10.1006/jcis.1993.1443
N. N. Kamneva, A. Y. Kharchenko, O. S. Bykova, A. V. Sundenko, N. O. Mchedlov-Petrossyan, The influence of 1-butanol and electrolytic background on the properties of CTAB micelles as examined using a set of indicator dyes, Moll. Liq. 199 (2014) 376-384, doi:10.1016/j.molliq.2014.09.022
A. Y. Kharchenko, O. G. Moskaeva, O. R. Klochaniuk, M. O. Marfunin, N. O. Mchedlov-Petrossyan, Effect of poly (sodium 4-styrenesulfonate) on the ionization constants of acid-base indicator dyes in aqueous solutions, Colloids Surf., A 527 (2017) 132-144, doi:10.1016/j.colsurfa.2017.05.030
J. J. Tanahatoe, Dynamic Light Scattering of Flexible Highly Charged Polyelectrolytes at In-finite Dilution, J. Phys. Chem. B 101 (1997) 10442-10445, doi:10.1021/jp972428z
J. J. Tanahatoe, M. E. Kuil, Dynamic Light Scattering of a Flexible Highly Charged Polyelectrolyte in the Dilute Concentration Regime, Macromolecules 30 (1997) 6102-6106, doi:10.1021/ma9703259
Z. Adamczyk, M. Zembala, P. Warszyński, B. Jachimska, Characterization of Polyelectrolyte Multilayers by the Streaming Potential Method, Langmuir 20 (2004) 10517-10525, doi:10.1021/la040064d
G. M. Pavlov, A. S. Gubarev, I. I. Gavrilova, E. F. Panarin, Conformations of sodium poly(styrene-4-sulfonate) macromolecules in solutions with different ionic strengths, Polym. Sci. Ser. A 53 (2011) 1003-1011, doi:10.1134/S0965545X11110095
A. Y. Kharchenko, O. G. Moskaeva, The acid-base equilibrium of cationic dyes in the aque-ous solutions of poly (sodium 4-styrenesulfonate), Kharkiv University Bull. Chem. Series 26 (2016) 12-25.
P. Dell' Antone, R. Colonna, G. F. Azzone, The Membrane Structure Studied with Cationic Dyes, Eur. J. Biochem. 24 (1972) 566-576, doi:10.1111/j.1432-1033.1972.tb19719.x
N. O. Mchedlov-Petrossyan, L. P. Loginova, V. N. Klesch'evnikova, The influence of salts on the ionization of indicators in the Stern layer of cationic micelles, Zhur. Fiz. Khim. 67 (1993) 1649-1653 (in Russian).
H. Cottet, P. Gareil, O. Theodoly, C. E. Williams, A semi-empirical approach to the modeling of the electrophoretic mobility in free solution: application to polystyrenesulfonates of various sulfonation rates, Electrophoresis 21 (2000) 3529-3540, doi:10.1002/1522-2683(200011)21:17<3529::AID-ELPS3529>3.0.CO;2-2
A. Marcilla, F. Ruíz, M. M. Olaya, Liquid-liquid-solid equilibria of the quaternary system water-ethanol-1-butanol-soldium chloride at 25°C, Fluid Phase Equil. 105 (1995) 71-91, doi:10.1016/0378-3812(94)02595-R
Z. Li, Y. Tang, Y. Liu, Y. Li, Salting effect in partially miscible systems of n-butanol–water and butanone–water 1. Determination and correlation of liquid-liquid equilibrium data, Fluid Phase Equil. 103 (1995) 143-153, doi:10.1016/0378-3812(94)02615-8
R. Stephenson, J. Stuart, Mutual binary solubilities: water-alcohols and water-esters, J. Chem. & Engineering Data 31 (1986) 56-70, doi:10.1021/je00043a019
A. Oudshoorn, M. C. F. M. Peters, L. A. M. van der Wielen, A. J. J. Straathof, Exploring the potential of recovering 1-butanol from aqueous solutions by liquid demixing upon addition of carbohydrates or salts, J. Chem. Tech. & Biotech. 86 (2011) 714-718, doi:10.1002/jctb.2577