Complexation of Cu(BF4)2 with 3-hydroxyflavone in acetonitrile: quantum chemical calculation

Keywords: quantum-chemical calculations, density function theory, copper tetrafluoroborate, acetonitrile, 3-hydroxyflavone, complexation, hydrogen bond

Abstract

In the article the results of the quantum chemical study of copper (II) solvato-complexes with acetonitrile (AN), tetrafluoroborate anion (BF4) and 3-hydroxyflavone (flv) of the composition [Cu(AN)6]2+, [Cu(BF4)(AN)5]+, [Cu(flv)(AN)5]2+, [Cu(flv)(BF4)(AN)4]+ are presented. Calculations were done using density function theory (DFT) on the M06-2X/6-311++G(d,p) level of theory. Obtained results were interpreted in terms of complexes geometry and topology of electron density distribution using non-covalent interactions (NCI) approach. It was shown that flv molecule is a monodentate ligand in copper (II) complexes and coordinates central atom via carbonyl oxygen. Intramolecular hydrogen bond that exists in an isolated flv molecule was found to be broken upon [Cu(flv)(AN)5]2+ complex formation. In [Cu(flv)(AN)5]2+ complex, a significant rotation of phenyl ring over the planar chromone fragment was spotted as a consequence of intramolecular hydrogen bond breaking. Upon inclusion of BF4 anion to the first solvation shell of Cu2+, an intracomplex hydrogen bond was formed between hydrogen atom of hydroxyl group of flv molecule and the closest fluorine atom of BF4 anion. NCI analysis had shown that a hydrogen bond between hydrogen atom of hydroxyl group of flv molecule and the closest fluorine atom of BF4 anion is significantly stronger than intramolecular hydrogen bond in an isolated flv molecule. In addition, flexible phenyl ring of flv molecule in [Cu(flv)(BF4)(AN)4]+ complex was found to be internally stabilized by the weak van der Waals attraction between oxygen atoms of chromone ring and phenyl hydrogens. These evidences led to a conclusion that [Cu(flv)(BF4)(AN)4]+ complex is more stable, comparing to the in [Cu(flv)(AN)5]2+ complex.

Downloads

Download data is not yet available.

References

Andersen Ø. M., Markham K. R. Flavonoids: Chemistry, biochemistry and applications. 2005; p 1-1239.

Agati G., Azzarello E., Pollastri S., Tattini M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci. 2012, 196, 67-76.

Birjees Bukhari S., Memon S., Mahroof Tahir M., Bhanger M. I. Synthesis, characterization and investigation of antioxidant activity of cobalt-quercetin complex. J. Mol. Struct. 2008, 892, 39-46.

Muntean D., Imre S., Vari C. E. Physico-chemical characterisation of zn-flavonols complexes. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2007, 111, 1074-1078.

Bukhari S. B., Memon S., Mahroof-Tahir M., Bhanger M. I. Synthesis, characterization and antioxidant activity copper-quercetin complex. Spectrochim. Acta, Part A 2009, 71, 1901 1906.

Zhao J., Ji S., Chen Y., Guo H., Yang P. Excited state intramolecular proton transfer (esipt): From principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Phys. Chem. Chem. Phys. 2012, 14, 8803-8817.

Qin T., Liu B., Huang Y., Yang K., Zhu K., Luo Z., Pan C., Wang L. Ratiometric fluorescent monitoring of methanol in biodiesel by using an esipt-based flavonoid probe. Sens. Actuators, B 2018, 277, 484-491.

Hu Y., Gao X., Li X., Liang H., Zhang D., Liu C. The application of flavonoid derivatives as redox-responsive fluorescent probes in hydrophobic microenvironment. Sens. Actuators, B 2018, 262, 144-152.

Feng L., Liu Z. M., Hou J., Lv X., Ning J., Ge G. B., Cui J. N., Yang L. A highly selective fluorescent esipt probe for the detection of human carboxylesterase 2 and its biological applications. Biosens. Bioelectron. 2015, 65, 9-15.

Wu Y. S., Huang F. F., Lin Y. W. Fluorescent detection of lead in environmental water and urine samples using enzyme mimics of catechin-synthesized au nanoparticles. ACS Appl. Mater. Interfaces 2013, 5, 1503-1509.

Yang S., Jiang W., Tang Y., Xu L., Gao B., Xu H. Sensitive fluorescent assay for Copper(II) determination in aqueous solution using quercetin-cyclodextrin inclusion. RSC Adv. 2018, 8, 37828-37834.

Lu Y., Jia C., Yao Q., Zhong H., Breadmore M. C. Analysis of flavonoids by non-aqueous capillary electrophoresis with 1-ethyl-3-methylimidazolium ionic-liquids as background electrolytes. J. Chromatogr. A 2013, 1319, 160-165.

Bogel-Łukasik R., Nobre Gonçalves L. M., Bogel-Łukasik E. Phase equilibrium phenomena in solutions involving tannins, flavonoids and ionic liquids. Green Chem. 2010, 12, 1947 1953.

Roshal A. D., Grigorovich A. V., Doroshenko A. O., Pivovarenko V. G., Demchenko A. P. Flavonols and crown-flavonols as metal cation chelators. The different nature of Ba2+ and Mg2+ complexes. J. Phys. Chem. A 1998, 102, 5907-5914.

Roshal A. D., Grigorovich A. V., Doroshenko A. O., Pivovarenko V. G., Demchenko A. P. Flavonols as metal-ion chelators: Complex formation with Mg2+ and Ba2+ cations in the excited state. J. Photochem. Photobiol., A 1999, 127, 89-100.

Jungbluth G., Rühling I., Ternes W. Oxidation of flavonols with Cu(II), Fe(II) and Fe(III) in aqueous media. J. Chem. Soc., Perkin Trans. 1 2000, 1946-1952.

Rodriguez-Santiago L., Sierka M., Branchadell V., Sodupe M., Sauer J. Coordination of Cu+ ions to zeolite frameworks strongly enhances their ability to bind NO2: An ab initio density functional study. JACS 1998, 120, 1545-1551.

Holthausen M. C., Heinemann C., Cornehl H. H., Koch W., Schwarz H. The performance of density-functional/Hartree-Fock hybrid methods: Cationic transition-metal methyl complexes MCH3+ (M=Sc-Cu,La,Hf-Au). J. Chem. Phys. 1995, 102, 4931-4941.

Holthausen M. C., Mohr M., Koch W. The performance of density functional/Hartree-Fock hybrid methods: The bonding in cationic first-row transition metal methylene complexes. Chem. Phys. Lett. 1995, 240, 245-252.

Glukhovtsev M. N., Bach R. D., Nagel C. J. Performance of the B3LYP/ECP DFT calculations of iron-containing compounds. J. Phys. Chem. A 1997, 101, 316-323.

Niu S., Hall M. B. Comparison of Hartree-Fock, density functional, Møller-Plesset perturbation, coupled cluster, and configuration interaction methods for the migratory insertion of nitric oxide into a cobalt-carbon bond. J. Phys. Chem. A 1997, 101, 1360-1365.

Pavlov M., Blomberg M. R. A., Siegbahn P. E. M., Wesendrup R., Heinemann C., Schwarz H. Pt+-catalyzed oxidation of methane: Theory and experiment. J. Phys. Chem. A 1997, 101, 1567-1579.

Luna A., Amekraz B., Tortajada J. A theoretical study on the complexation of sp, sp2 and sp3 nitrogen-containing species by Cu+. Chem. Phys. Lett. 1997, 266, 31-37.

Thomas, Bauschlicher C. W., Hall M. B. Binding of nitric oxide to first-transition-row metal cations: An ab initio study. J. Phys. Chem. A 1997, 101, 8530-8539.

Cacelli I., Keogh D. W., Poli R., Rizzo A. Theoretical study of the 15- and 17-electron structures of cyclopentadienylchromium(III) and cyclopentadienylmolybdenum(III) complexes. Dichloride and dimethyl compounds. J. Phys. Chem. A 1997, 101, 9801-9812.

Tyagi P., Chandra S., Saraswat B. S., Yadav D. Design, spectral characterization, thermal, DFT studies and anticancer cell line activities of Co(II), Ni(II) and Cu(II) complexes of schiff bases derived from 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol. Spectrochim. Acta, Part A 2015, 145, 155-164.

Luzardo F., Álvarez N., Kremer C., de Camargo A. S. S., Gancheff J. S. New complexes of Cu(II) with dipicolinate and pyridyl-based ligands: An experimental and DFT approach. Spectrochim. Acta, Part A 2017, 183, 45-52.

Jana M. S., Pramanik A. K., Mondal T. K. Octahedral Ni(II) and Cu(II) complexes with a new hexadentate (NSN)2 donor ligand: Synthesis, characterization, X-ray structure and DFT calculations. Polyhedron 2014, 76, 29-35.

Ghorai P., Saha R., Bhuiya S., Das S., Brandão P., Ghosh D., Bhaumik T., Bandyopadhyay P., Chattopadhyay D., Saha A. Syntheses of Zn(II) and Cu(II) schiff base complexes using N,O donor schiff base ligand: Crystal structure, DNA binding, DNA cleavage, docking and DFT study. Polyhedron 2018, 141, 153-163.

Burda J. V., Pavelka M., Šimánek M. Theoretical model of copper Cu(I)/Cu(II) hydration. DFT and ab initio quantum chemical study. J. Mol. Struct. THEOCHEM 2004, 683, 183-193.

Malecki J. G., MacHura B., S ́witlicka A. X-ray studies, spectroscopic characterisation and DFT calculations for Mn(II), Ni(II) and Cu(II) complexes with 5, 6-diphenyl-3-(2-pyridyl)-1,2,4-triazine. Struct. Chem. 2011, 22, 77-87.

Becke A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648-5652.

Lee C., Yang W., Parr R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter 1988, 37, 785-789.

Fong-Padrón C., Cabaleiro-Lago E. M., Rodríguez-Otero J. Water interaction with ion pairs from ionic liquids. Computational study and performance assessment of several common functionals. Chem. Phys. Lett. 2014, 593, 181-188.

Li A., Muddana H. S., Gilson M. K. Quantum mechanical calculation of noncovalent interactions: A large-scale evaluation of pmx, dft, and sapt approaches. J. Chem. Theory Comput. 2014, 10, 1563-1575.

Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787-1799.

Wu X., Vargas M. C., Nayak S. Towards extending the applicability of density functional theory to weakly bound systems. J. Chem. Phys. 2001, 115, 8748-8757.

Peverati R., Truhlar D. G. Quest for a universal density functional: The accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Philos. Trans. R. Soc. London, Ser. A 2014, 372.

Zhao Y., Truhlar D. G. The m06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215-241.

Goerigk L., Grimme S. A general database for main group thermochemistry, kinetics, and noncovalent interactions − assessment of common and reparameterized (meta-)GGA density functionals. J. Chem. Theory Comput. 2010, 6, 107-126.

Goerigk L., Grimme S. Efficient and accurate double-hybrid-meta-GGA density functionals—evaluation with the extended gmtkn30 database for general main group thermochemistry, kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2011, 7, 291-309.

Goerigk L., Grimme S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys. 2011, 13, 6670-6688.

Burns L. A., Vázquez-Mayagoitia A., Sumpter B. G., Sherrill C. D. Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. J. Chem. Phys. 2011, 134.

Johnson E. R., Keinan S., Mori-Sánchez P., Contreras-García J., Cohen A. J., Yang W. Revealing noncovalent interactions. JACS 2010, 132, 6498-6506.

Persson I., Penner-Hahn J. E., Hodgson K. O. An exafs spectroscopic study of solvates of Copper(I) and Copper(II) in acetonitrile, dimethyl sulfoxide, pyridine, and tetrahydrothiophene solutions and a large-angle X-ray scattering study of the Copper(II) acetonitrile solvate in solution. Inorg. Chem. 1993, 32, 2497-2501.

Agieienko V. N., Kalugin O. N. Complexation of Ni(ClO4)2 and Mg(ClO4)2 with 3 hydroxyflavone in acetonitrile medium: Conductometric, spectroscopic, and quantum chemical investigation. J. Phys. Chem. B 2014, 118, 12251-12262.

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas, Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, revision b.01. Wallingford CT, 2009.

Marekha B. A., Kalugin O. N., Idrissi A. Non-covalent interactions in ionic liquid ion pairs and ion pair dimers: A quantum chemical calculation analysis. Phys. Chem. Chem. Phys. 2015, 17, 16846-16857.

Wong M. W., Frisch M. J., Wiberg K. B. Solvent effects. 1. The mediation of electrostatic effects by solvents. JACS 1991, 113, 4776-4782.

Lu T., Chen F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-592.

Cornard J. P., Merlin J. C. Comparison of the chelating power of hydroxyflavones. J. Mol. Struct. 2003, 651-653, 381-387.

Cornard J. P., Dangleterre L., Lapouge C. DFT and TD-DFT investigation and spectroscopic characterization of the molecular and electronic structure of the Zn(II)–3-hydroxyflavone complex. Chem. Phys. Lett. 2006, 419, 304-308.

Etter M. C., Urbańczyk-Lipkowska Z., Baer S., Barbara P. F. The crystal structures and hydrogen-bond properties of three 3-hydroxy-flavone derivatives. J. Mol. Struct. 1986, 144, 155-167.

Persson I. Hydrated metal ions in aqueous solution: How regular are their structures? Pure Appl. Chem. 2010, 82, 1901-1917.

Published
2018-12-24
Cited
How to Cite
Novikov, D. O., & Kalugin, O. N. (2018). Complexation of Cu(BF4)2 with 3-hydroxyflavone in acetonitrile: quantum chemical calculation. Kharkiv University Bulletin. Chemical Series, (31), 53-63. https://doi.org/10.26565/2220-637X-2018-31-05