Derivatives of 1,3,5 triaryl-2-pyrazoline with additional heterocyclic moieties in position 1 as potential fluorescent chemosensing compounds for detection of polyvalent metals cations
Abstract
A series of 1,3,5-triaryl-2-pyrazoline derivatives with pyridine or 8'-hydroxyquinoline fragments in position 1 have been synthesized, some of which also contain a hydroxy group in the ortho-position of benzene ring-3, which makes possible the their OH-group proton phototransfer reaction to the nitrogen atom of pyrazoline cycle. The nitrogen atoms in molecules of the investigated compounds form chelate cavities, binding of the ions of polyvalent metals to which should lead to changes in the spectral characteristics. The spectral-luminescent properties of the synthesized compounds in solvents of different polarity and their interaction with salts of several polyvalent metals in acetonitrile were investigated. The proton phototransfer reaction was shown to result in significant fluorescence quenching, the most prominent for the derivative with the hydroxyquinoline fragment in position 1 of pyrazoline cycle. The proton transfer reaction rate constants vary within the interval of 2-4∙109 s-1 in aprotic solvents of different polarity.
The prospects for application of the synthesized derivatives as fluorescent chemosensor compounds for the analysis of polyvalent metals were examined. In most of the studied cases, their interaction with heavy metal ions led to decrease of fluorescence intensity, however for compounds with intramolecular proton phototransfer reaction, no significant quenching by heavy metal ions was observed. The exception was the mercury ions, in the interaction with which compounds with proton phototransfer reaction demonstrated intensity redistribution of their two emission bands on the background of their general fluorescence quenching. The latter circumstance indicates the possibility of application of the modern methods of ratiometric fluorescence detection for the analysis of Hg2+ ions with their help.
Downloads
References
Wu J., Liu W., Ge J., Zhang H.,Wang P. New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chem. Soc. Rev. 2011, 40, 3483 3495.
Ushakov M. V., Alfimov M. V.,Gromov S. P. Design principles for optical molecular sensors and photocontrolled receptors based on crown ethers. Russ. Chem. Rev. 2008, 77, 39-58.
de Silva A. P., Fox D. B., Huxley A. J. M.,Moody T. S. Combining luminescence, coordination and electron transfer for signalling purposes. Coord. Chem. Rev. 2000, 205, 41 57.
Callan J. F., de Silva A. P.,Magri D. C. Luminescent sensors and switches in the early 21st century. Tetrahedron 2005, 61, 8551-8588.
Li H.,Yan H. Ratiometric fluorescent mercuric sensor based on thiourea−thiadiazole−pyridine linked organic nanoparticles. J. Phys. Chem. C 2009, 113, 7526-7530.
Chia Y. Y.,Tay M. G. An insight into fluorescent transition metal complexes. Dalton Trans. 2014, 43, 13159-13168.
Emptage N. J. Fluorescent imaging in living systems. Curr. Opin. Pharmacol. 2001, 1, 521 525.
Carter K. P., Young A. M.,Palmer A. E. Fluorescent sensors for measuring metal ions in living systems. Chem. Rev. 2014, 114, 4564-4601.
Drabovich A. P., Berezovski M. V., Musheev M. U.,Krylov S. N. Selection of smart small-molecule ligands: The proof of principle. Anal. Chem. 2009, 81, 490-494.
Baldrighi M., Locatelli G., Desper J., Aakeröy C. B.,Giordani S. Probing metal ion complexation of ligands with multiple metal binding sites: The case of spiropyrans. Chem. - Eur. J. 2016, 22, 13976-13984.
Yan M.-K., Zheng C., Yin J., An Z.-F., Chen R.-F., Feng X.-M., Song J., Fan Q.-L.,Huang W. Theoretical study of organic molecules containing n or s atoms as receptors for Hg(II) fluorescent sensors. Synth. Met. 2012, 162, 641-649.
Roshal A. D., Grigorovich A. V., Doroshenko A. O., Pivovarenko V. G., Demchenko A. P. Flavonols and crown-flavonols as metal cation chelators. The different nature of Ba2+ and Mg2+ complexes. J. Phys. Chem. A 1998, 102, 5907-5914.
Cherrak S. A., Mokhtari-Soulimane N., Berroukeche F., Bensenane B., Cherbonnel A., Merzouk H.,Elhabiri M. In vitro antioxidant versus metal ion chelating properties of flavonoids: A structure-activity investigation. PLoS ONE 2016, 11.
Dondaine L., Escudero D., Ali M., Richard P., Denat F., Bettaieb A., Le Gendre P., Paul C., Jacquemin D., Goze C.,Bodio E. Coumarin-phosphine-based smart probes for tracking biologically relevant metal complexes: From theoretical to biological investigations. Eur. J. Inorg. Chem. 2016, 2016, 545-553.
Gong Z.-L., Zhao B.-X., Liu W.-Y.,Lv H.-S. A new highly selective “turn on” fluorescent sensor for zinc ion based on a pyrazoline derivative. J. Photochem. Photobiol., A 2011, 218, 6 10.
Wang S.-Q., Gao Y., Wang H.-Y., Zheng X.-X., Shen S.-L., Zhang Y.-R., Zhao B.-X. Synthesis, x-ray crystal structure and optical properties of novel 1,3,5-triarylpyrazoline derivatives and the fluorescent sensor for Cu2+. Spectrochim. Acta, Part A 2013, 106, 110-117.
Wang S.-Q., Liu S.-Y., Wang H.-Y., Zheng X.-X., Yuan X., Liu Y.-Z., Miao J. Y., Zhao B. X. Novel pyrazoline-based selective fluorescent sensor for Hg2+. J. Fluorescence 2014, 24, 657 663.
Hu S., Song J., Wu G., Cheng C.,Gao Q. A new pyrazoline-based fluorescent sensor for Al3+ in aqueous solution. Spectrochim. Acta, Part A 2015, 136, Part B, 1188-1194.
Subashini G., Shankar R., Arasakumar T., Mohan P. S. Quinoline appended pyrazoline based ni sensor and its application towards live cell imaging and environmental monitoring. Sens. Actuators, B 2017, 243, 549-556.
Bozkurt E., Gul H. I. A novel pyrazoline-based fluorometric “turn-off” sensing for Hg2+. Sens. Actuators, B 2018, 255, 814-825.
Julien M., Denis J.,Gilles U. Molecular engineering of excited-state intramolecular proton transfer (ESIPT) dual and triple emitters. Chem. Lett. 2018, 47, 1083-1089.
Klymchenko A. S., Demchenko A. P. Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Phys. Chem. Chem. Phys. 2003, 5, 461-468.
Klymchenko A. S.,Demchenko A. P. Chapter 3 multiparametric probing of microenvironment with solvatochromic fluorescent dyes. In Methods in enzymology, Academic Press: 2008; Vol. 450, pp 37-58.
Demchenko A. P. The concept of λ-ratiometry in fluorescence sensing and imaging. J. Fluorescence 2010, 20, 1099-1128.
Demas J. N.,Crosby G. A. Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 1971, 75, 991-1024.
Melhuish W. H. Absolute spectrofluorometry. J. Res. Nat. Inst. Stand. Techn. A 1972, 76A, 547-560.
Iliashenko R. Y., Gorobets N. Y., Doroshenko A. O. New and efficient high stokes shift fluorescent compounds: Unsymmetrically substituted 1,2-bis-(5-phenyloxazol-2-yl)benzenes via microwave-assisted nucleophilic substitution of fluorine. Tetrahedron Lett. 2011, 52, 5086-5089.
Srivastava Y. K. Ecofriendly microwave assisted synthesis of some chalcones. Rasayan J Chem. 2008, 1, 884-886.
Rajput J. K., Kaur G. Silicotungstic acid catalysed claisen schmidt condensation reaction: An efficient protocol for synthesis of 1,3-diaryl-2-propenones. Tetrahedron Lett. 2012, 53, 646-649.
Todeschini A. R., de Miranda A. L. P., da Silva K. C. M., Parrini S. C., Barreiro E. J. Synthesis and evaluation of analgesic, antiinflammatory and antiplatelet properties of new 2 pyridylarylhydrazone derivatives. Eur. J. Med. Chem. 1998, 33, 189-199.
Rudolph T., Przystal F., Phillips J. P. 2-hydrazino-8-quinolinol and derivatives. J. Med. Chem. 1967, 10, 981-981.
Zielinska-Błajet M., Kowalczyk R., Skarżewski J. Ring-closure reactions through intramolecular substitution of thiophenoxide by oxygen and nitrogen nucleophiles: Simple stereospecific synthesis of 4,5-dihydroisoxazoles and 4,5-dihydropyrazoles. Tetrahedron 2005, 61, 5235-5240.
Reichardt C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 1994, 94, 2319 2358.
Weller A. Innermolekularer protonenübergang im angeregten zustand. Z. Elektrochem. 1956, 60, 1144-1147.
Heller A., Williams D. L. Intramolecular proton transfer reactions in excited fluorescent compounds. J. Phys. Chem. 1970, 74, 4473-4480.
Klopffer W. Intramolecular proton transfer in electronically excited molecules. In Advances in photochemistry, Pitts Jr., J. N.; Hammond, G. S.; Gollnick, K., Eds. John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1977; Vol. 10, pp 311-358.
Formosinho S. J.,Arnaut L. G. Excited-state proton transfer reactions II. Intramolecular reactions. J. Photochem. Photobiol., A 1993, 75, 21-48.
Ormson S., Brown R. Excited state intramolecular proton transfer. I: Esipt to nitrogen. Prog. React. Kinet. 1994, 19, 45-91.
Douhal A., Lahmani F., Zewail A. H. Proton-transfer reaction dynamics. Chem. Phys. 1996, 207, 477-498.
Basilevsky M. V., Vener M. V. Theoretical investigations of proton and hydrogen atom transfer in the condensed phase. Russ. Chem. Rev. 2003, 72, 1-33.
Catalán J., Del Valle J. C., Díaz C., Palomar J., De Paz J. L. G., Kasha M. Solvatochromism of fluorophores with an intramolecular hydrogen bond and their use as probes in biomolecular cavity sites. Int. J. Quantum Chem. 1999, 72, 421-438.
Doroshenko A., Posokhov E., Shershukov V., Mitina V., Ponomarev O. Intramolecular proton-transfer reaction in an excited state in a series of ortho-hydroxy derivatives of 2,5 diaryloxazole. High Energy Chem. 1997, 31, 388-394.
Doroshenko A. O., Posokhov E. A., Verezubova A. A., Ptyagina L. M. Excited state intramolecular proton transfer reaction and luminescent properties of the ortho-hydroxy derivatives of 2,5-diphenyl-1,3,4-oxadiazole. J. Phys. Org. Chem. 2000, 13, 253-265.
Doroshenko A. O., Matsakov A. Y., Nevskii O. V., Grygorovych O. V. Excited state intramolecular proton transfer reaction revisited: S1 state or general reversibility? J. Photochem. Photobiol., A 2012, 250, 40-49.
Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A: Found. Adv. 1976, 32, 751-767.
Roshal A. D., Grigorovich A. V., Doroshenko A. O., Pivovarenko V. G., Demchenko A. P. Flavonols as metal-ion chelators: Complex formation with Mg2+ and Ba2+ cations in the excited state. J. Phys. Chem. A 1999, 127, 89-100.
Demchenko A. P. Practical aspects of wavelength ratiometry in the studies of intermolecular interactions. J. Mol. Struct. 2014, 1077, 51-67.