Density and Solvation Effects of Imidazolium Based Ionic Liquids in Propylene Carbonate

Keywords: densimetry, density, apparent partial molar volume, solvation, 1-butyl-3-methylimidazolium, tetrafluoroborate, hexafluorophosphate, bromide, propylene carbonate, molecular dynamics simulation

Abstract

The results of densimetry investigation of the solutions of 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), hexafluorophosphate (BMIMPF6) and bromide (BMIMBr) in propylene carbonate (PC) at 298.15, 318.15, 338.15 and 358.15 К are presented and discussed in terms of apparent partial molar volumes and solvation contribution. Density measurements were carried out using the vibrational tube densitometer Mettler Toledo DM 50 with accuracy ± 3∙10-5 g/cm3.

The limiting partial molar volumes of investigated ionic liquids in PC were obtained from density experiment using Masson equation and divided into ionic contributions. Limiting partial molar volumes of BMIMBF4, BMIMPF6 and BMIMBr in PC slightly increase with the increase of temperature. The limiting partial molar volumes of BMIM+ cation obtained from three ionic liquids with different anions was found to have the same value, 115 cm3/mol at 298.15 K.

The intrinsic volume of BMIM+ cation estimated from quantum chemical calculations at the M062X/6‑311++G(d,p) theory level exceeds one obtained from density experiment indicating that solvation of cation has a negative contribution to the volume of ion in propylene carbonate.

In order to investigate the microscopic structure of the BMIM+ solvation shell in PC, molecular dynamics simulation of the infinitely dilute solution was carried out in the NVT ensemble at 298.15 K. The results of the simulation reveal that 5-6 PC molecules forming the first solvation shell penetrate into the inner space of the cation, which agrees with the results of a density experiment treatment. From the analysis of the cation-solvent site-site radial distribution functions and the running coordination numbers it was established that the most probable coordination center of PC molecule is carbonyl oxygen.

Downloads

Download data is not yet available.

References

Ue M., Takeda M., Toriumi A., Kominato A., Hagiwara R., Ito Y. Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors. J. Electrochem. Soc. 2003, 150 (4), A499-A502.

Plechkova N. V., Seddon K. R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37 (1), 123-150.

Husson E., Hadad C., Huet G., Laclef S., Lesur D., Lambertyn V., Jamali A., Gottis S., Sarazin C., Nguyen Van Nhien A. The effect of room temperature ionic liquids on the selective biocatalytic hydrolysis of chitin via sequential or simultaneous strategies. Green Chem. 2017, 19 (17), 4122-4131.

Gong X., West B., Taylor A., Li L. Study on nanometer-thick room-temperature ionic liquids (RTILs) for application as the media lubricant in heat-assisted magnetic recording (HAMR). Ind. Eng. Chem. Res. 2016, 55 (22), 6391-6397.

Shi C., Jia Y., Zhang C., Liu H., Jing Y. Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate. Fusion Eng. Des. 2015, 90, 1-6.

R. MacFarlane D., Tachikawa N., Forsyth M., Pringle J., Howlett P., Elliott G., Davis J., Watanabe M., Simon P., Angell C. Energy applications of ionic liquids. 2014; Vol. 7, p 232.

Chagnes A., Diaw M., Carré B., Willmann P., Lemordant D. Imidazolium-organic solvent mixtures as electrolytes for lithium batteries. J. Power. Sources. 2005, 145 (1), 82-88.

Ruiz V., Huynh T., Sivakkumar S. R., Pandolfo A. G. Ionic liquid-solvent mixtures as supercapacitor electrolytes for extreme temperature operation. RSC Adv. 2012, 2 (13), 5591 5598.

Wang P., Zakeeruddin S. M., Moser J.-E., Grätzel M. A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells. J. Phys. Chem. B 2003, 107 (48), 13280-13285.

Hardwick L. J., Buqa H., Holzapfel M., Scheifele W., Krumeich F., Novák P. Behaviour of highly crystalline graphitic materials in lithium-ion cells with propylene carbonate containing electrolytes: An in situ Raman and SEM study. Electrochim. Acta 2007, 52 (15), 4884-4891.

Allen J. L., Borodin O., Seo D. M., Henderson W. A. Combined quantum chemical/Raman spectroscopic analyses of Li+ cation solvation: Cyclic carbonate solvents—ethylene carbonate and propylene carbonate. J. Power Sources 2014, 267, 821-830.

Krakowiak J. Apparent molar volumes and compressibilities of tetrabutyl-ammonium bromide in organic solvents. J. Chem. Thermodyn. 2011, 43 (6), 882-894.

Marcus Y. The standard partial molar volumes of ions in solution. Part 3. Volumes in solvent mixtures where preferential solvation takes place. J. Solution Chem. 2005, 34 (3), 317-331.

Roy M. N., Chanda R., Chakraborti P., Das A. Conductivity is a contrivance to explore ion-pair and triple-ion structure of ethanoates in tetrahydrofuran, dimethyl sulfoxide and their binaries. Fluid Phase Equilibr. 2012, 322-323, 159-166.

Zhao Y., Wang J., Lu H., Lin R. Standard partial molar volumes of some electrolytes in ethylene carbonate based mixtures. J. Chem. Thermodyn. 2004, 36 (1), 1-6.

Giesecke M., Meriguet G., Hallberg F., Fang Y., Stilbs P., Furo I. Ion association in aqueous and non-aqueous solutions probed by diffusion and electrophoretic NMR. Phys. Chem. Chem. Phys. 2015, 17 (5), 3402-3408.

Molinou I. E., Tsierkezos N. G. Study of the interactions of sodium thiocyanate, potassium thiocyanate and ammonium thiocyanate in water+N,N-dimethylformamide mixtures by Raman spectroscopy. Spectrochim. Acta A 2008, 71 (3), 954-958.

Moon H., Mandai T., Tatara R., Ueno K., Yamazaki A., Yoshida K., Seki S., Dokko K., Watanabe M. Solvent activity in electrolyte solutions controls electrochemical reactions in Li ion and Li-sulfur batteries. J. Phys. Chem. C 2015, 119 (8), 3957-3970.

Pires J., Timperman L., Jacquemin J., Balducci A., Anouti M. Density, conductivity, viscosity, and excess properties of (pyrrolidinium nitrate-based protic ionic liquid + propylene carbonate) binary mixture. 2013; Vol. 59, p 10-19.

Vraneš M., Zec N., Tot A., Papović S., Dožić S., Gadžurić S. Density, electrical conductivity, viscosity and excess properties of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide+propylene carbonate binary mixtures. J. Chem. Thermodyn. 2014, 68, 98-108.

Zarrougui R., Dhahbi M., Lemordant D. Effect of temperature and composition on the transport and thermodynamic properties of binary mixtures of ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and propylene carbonate. J. Solution. Chem. 2010, 39 (7), 921-942.

Zhang Q., Li Q., Liu D., Zhang X., Lang X. Density, dynamic viscosity, electrical conductivity, electrochemical potential window, and excess properties of ionic liquid N-butyl-pyridinium dicyanamide and binary system with propylene carbonate. J. Mol. Liq. 2018, 249, 1097-1106.

Masson D. O. XXVIII. Solute molecular volumes in relation to solvation and ionization. The London, Edinburgh, and Dublin Philos. Mag. and J. Sci. 1929, 8 (49), 218-235.

Viana C. A. N., Dilo M., Segurado M. A. P. Temperature effects on conductivities and association constants of Lithium and tetra-ethylammonium salts in six aprotic solvents of medium to high permittivities from - 30 ºC to + 10 ºC. Port. Electrochim. Acta 2004, 22, 179 192.

Moumouzias G., Ritzoulis G. Relative permittivities and refractive indices of propylene carbonate + toluene mixtures from 283.15 K to 313.15 K. J. Chem. Eng. Data 1997, 42 (4), 710-713.

Muhuri P. K., Hazra D. K. Electrical conductances for some tetraalkylammonium bromides, lithium tetrafluoroborate and tetrabutylammonium tetrabutylborate in propylene carbonate at 25 °C. J. Chem. Soc. Faraday T. 1991, 87 (21), 3511-3513.

Jansen M. L., Yeager H. L. Conductance study of 1-1 electrolytes in propylene carbonate. J. Phys. Chem. B 1973, 77 (26), 3089-3092.

Casteel J. F., Angel J. R., McNeeley H. B., Sears P. G. Сonductance-viscosity studies on some moderately concentrated nonaqueous electrolyte solutions from minus 50 degree to 125 degree C - 2. Solutions of Pr4NBr, Bu4NBr, and Bu4NI in propylene carbonate. J. Electrochem. Soc. 1975, 122 (3), 319-324.

McDonagh P. M., Reardon J. F. Ionic association and mobility. III. Ionophores in propylene carbonate at 25°C. J. Solution Chem. 1996, 25 (6), 607-614.

Salomon M., Plichta E. Conductivities and ion association of 1:1 electrolytes in mixed aprotic solvents. Electrochim. Acta 1983, 28 (11), 1681-1686.

Brouillette D., Perron G., Desnoyers J. E. Apparent molar volume, heat capacity, and conductance of lithium bis(trifluoromethylsulfone)imide in glymes and other aprotic solvents. J. Solution Chem. 1998, 27 (2), 151-182.

Ue M. Conductivities and ion association of quaternary ammonium tetrafluoroborates in propylene carbonate. Electrochim. Acta 1994, 39 (13), 2083-2087.

Barthel J., Utz M., Groß K., Gores H. J. Temperature and composition dependence of viscosity I. Propylene carbonate-dimethoxyethane mixtures and thermodynamics of fluid flow. J. Solution Chem. 1995, 24 (11), 1109-1123.

Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104 (10), 4303-4418.

D'Aprano A., Salomon M., Iammarino M. Conductance of alkali metal perchlorates in propylene carbonate at 25°C. J. Electroanal. Chem. 1996, 403 (1), 245-249.

Marcus Y., Hefter G. Standard partial molar volumes of electrolytes and ions in nonaqueous solvents. Chem. Rev. 2004, 104 (7), 3405-3452.

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas, Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision B.01. Wallingford CT, 2009.

Kalugin O. N., Volobuev M. N., Kolesnik Y. V. MDNAES: the program set for computer modelling of ion-molecular systems by using molecular dynamics method. Kharkov University Bulletin 1999, 454, 58-79.

Payne R., Theodorou I. E. Dielectric properties and relaxation in ethylene carbonate and propylene carbonate. J. Phys. Chem. 1972, 76 (20), 2892-2900.

Arbad B. R., Lande M. K., Wankhede N. N., Wankhede D. S. Viscosities, ultrasonic velocities at (288.15 and 298.15) K, and refractive indices at (298.15) K of binary mixtures of 2,4,6 trimethyl-1,3,5-trioxane with dimethyl carbonate, diethyl carbonate, and propylene carbonate. J. Chem. Eng. Data 2006, 51 (1), 68-72.

Postupna O. O., Kolesnik Y. V., Kalugin O. N., Prezhdo O. V. Microscopic structure and dynamics of LiBF4 solutions in cyclic and linear carbonates. J. Phys. Chem. B 2011, 115 (49), 14563-14571.

Mondal A., Balasubramanian S. Quantitative prediction of physical properties of imidazolium based room temperature ionic liquids through determination of condensed phase site charges: a refined force field. J. Phys. Chem. B 2014, 118 (12), 3409-3422.

Koverga V., Kalugin O., Alexandre Miannay F., Smortsova Y., Goloviznina K., Marekha B., Jedlovszky P., Abdenacer I. The local structure in BmimPF6/acetonitrile mixture: The charge distribution effect. Phys. Chem. Chem. Phys. 2018, 20, 21890-21902.

Published
2018-12-24
Cited
How to Cite
Riabchunova, A. V., Karabtsova, V. M., & Kalugin, O. N. (2018). Density and Solvation Effects of Imidazolium Based Ionic Liquids in Propylene Carbonate. Kharkiv University Bulletin. Chemical Series, (31), 21-31. https://doi.org/10.26565/2220-637X-2018-31-02