Computational Study of Drug Delivery Systems with Radionuclide and Fluorescence Imaging Modalities. IV. Doxorubicin Delivery Systems Based on Albumin and Hemoglobin

  • V. Trusova Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-7087-071X
  • U. Malovytsia Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-7677-0779
  • P. Kuznietsov O.I. Akhiezer Department for Nuclear Physics and High Energy Physics, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0001-8477-1395
  • I. Yakymenko O.I. Akhiezer Department for Nuclear Physics and High Energy Physics, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-0194-8376
  • I. Karnaukhov National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine
  • A. Zelinsky National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine https://orcid.org/0000-0002-4110-8523
  • B. Borts National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine https://orcid.org/0000-0002-1492-4066
  • I. Ushakov National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine
  • L. Sidenko National Science Center “Kharkiv Institute of Physics and Technology”, Kharkiv, Ukraine
  • G. Gorbenko Department of Medical Physics and Biomedical Nanotechnologies, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine https://orcid.org/0000-0002-0954-5053
Keywords: Protein-based drug delivery nanosystems, Human serum albumin, Hemoglobin, Doxorubicin, Technetium complexes, Near infrared dyes, Molecular docking

Abstract

The development of multifunctional drug delivery systems that integrate therapeutic and diagnostic capabilities remains a major challenge in oncology. In the present work we investigated hybrid carriers composed of human serum albumin and hemoglobin (HSA-Hb) for doxorubicin (DOX) delivery combined with radionuclide and fluorescence imaging. Using molecular docking simulations, we systematically evaluated the interactions of HSA-Hb assemblies with twelve technetium-99m (99mTc)-labeled radiopharmaceuticals, DOX, and four near-infrared (NIR) dyes. The results revealed that hemoglobin markedly expands the binding landscape, providing exclusive and high-affinity sites for several 99mTc complexes (notably TcMEB and TcDIS), while also serving as the primary scaffold for DOX and NIR dyes. Two distinct DOX-binding pockets were identified within Hb subunits, suggesting enhanced drug stability and potential responsiveness to tumor hypoxia. Fluorescent dyes, including methylene blue, indocyanine green, AK7-5, and SQ1, exhibited preferential binding to Hb with affinities higher than those observed for albumin, indicating superior suitability for optical imaging. Importantly, the partitioning of radiopharmaceuticals to albumin and therapeutic/imaging ligands to hemoglobin reduced binding competition and enabled the simultaneous integration of multimodal functions within a single construct. These findings highlight HSA-Hb nanocarriers as promising candidates for next-generation theranostic platforms, combining efficient DOX delivery with non-invasive radionuclide and fluorescence monitoring.

Downloads

Download data is not yet available.

References

C. Ferraro, M. Dattilo, F. Patitucci, S. Prete, G. Scopelliti, O. Parisi, F. Puoci, Pharmaceutics. 16, 1172 (2024) https://doi.org/10.3390/pharmaceutics16091172.

J. Gao, J. Karp, R. Langer, N. Joshi, Chem Mater. 35, 359 (2023). https://doi.org/ 10.1021/acs.chemmater.2c03003.

A. Prajapati, E. Garcia-Garrido, A. Somoza, Cancers (Basel). 13, 3011 (2021). https://doi.org/ 10.3390/cancers13123011.

A. Spada, J. Emami, J. Tuszynski, A. Lavasanifar, Mol. Pharmaceut. 18, 1862 (2021). https://doi.org/10.1021/acs.molpharmaceut.1c00046.

V. Trusova, U. Tarabara, I. Karnaukhov, A. Zelinsky, B. Borts, I. Ushakov, L. Sidenko, G. Gorbenko, East Europ. J. Phys. 4, 447 (2024). https://doi.org/10.26565/2312-4334-2024-4-54.

V. Trusova, U. Malovytsia, P. Kuznietsov, I. Karnaukhov, A. Zelinsky, B. Borts, I. Ushakov, L. Sidenko, G. Gorbenko, East Europ. J. Phys. 1, 376 (2025). https://doi.org/10.26565/2312-4334-2025-1-46.

V. Trusova, U. Malovytsia, P. Kuznietsov, I. Karnaukhov, A. Zelinsky, B. Borts, I. Ushakov, L. Sidenko, G. Gorbenko, East Europ. J. Phys. 2, 398 (2025). https://doi.org/ 10.26565/2312-4334-2025-2-48.

J. Lukin, C. Ho, Chem. Rev. 104, 1219 (2004). http://dx.doi.org/10.1021/cr940325w.

M. F. Adasme, K. L. Linnemann, S. N. Bolz, F. Kaiser, S. Salentin, V. J. Haupt, M. Schroeder, Nucl. Acids Res. 49, W530-W534 (2021). https://doi.org/10.1093/nar/gkab294.

Published
2025-08-26
Cited
How to Cite
Trusova, V., Malovytsia, U., Kuznietsov, P., Yakymenko, I., Karnaukhov, I., Zelinsky, A., Borts, B., Ushakov, I., Sidenko, L., & Gorbenko, G. (2025). Computational Study of Drug Delivery Systems with Radionuclide and Fluorescence Imaging Modalities. IV. Doxorubicin Delivery Systems Based on Albumin and Hemoglobin. East European Journal of Physics, (3), 497-504. https://doi.org/10.26565/2312-4334-2025-3-55

Most read articles by the same author(s)

1 2 > >>