Mathematical model for the fingerprint minutiae distortion
Abstract
This paper involves the research of biometric fingerprint images, minutiae and the mathematical probabilistic model of their distortion. The suggested model is based on heuristic analysis of the fingerprint scanning results with account for the nature of the potential errors. She allows to model a typical minutiae behavior in the biometric fingerprint images. The most typical distortion types were modeled, including the displacement of the fingerprint`s geometrical center, fingerprint rotation, minutiae deletion, as well as the distance changes between minutiae pairs.
Downloads
References
Recognizing faces with PCA and ICA / Draper B.A., Baek K., Bartlett M.S., Beveridge J.R. Computer Vision and Image Under-standing. 2003. Issue 91. P. 115–137.
How should we represent faces for automatic recognition? / Craw I., Costen N.P., Kato T., Akamatsu S. IEEE Trans. Pat. Anal. Mach. Intel. 1999. Issue 21. P. 725–736.
Xiang C., Fan X.A., Lee T.H. Face recognition using recursive Fisher linear discriminant. Communications, Circuits and Systems. 2004. Vol. 2. P. 27–29.
ISO/IEC 19794-5. Information technology – Biometric data interchange formats – Part 5: Face image data.
Daugman J. How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology. 2004. Vol. 14, №1. P. 21–30.
Architecture of a Search Engine for Massive Comparison in an Iris Biometric System / Liu-Jimenez J., Sanchez-Reillo R., Lindoso A., Daugman J.G. Proceedings 40th Annual 2006 International Carnahan Conference on Security Technology. Lexington, KY, 2006. P. 103–108.
Person identification technique using human iris recognition / Christel-Loic T., Lionel M., Lionel T., Michel R. Proc. of Vision Interface. 2002. P. 294–299.
ISO/IEC 19794-6. Information technology – Biometric data interchange formats – Part 6: Iris image data.
Handbook of Fingerprint Recognition / Maltoni D., Maio D., Jain A.K., Prabhakar S. New York: Springer, 2003.
Xudong Jiang, Wei-Yun Yau. Fingerprint minutiae matching based on the local and global structures. Proceedings 15th Interna-tional Conference on Pattern Recognition. ICPR-2000. Barcelona, 2000 Vol. 2. P. 1038–1041.
A real-time matching system for large fingerprint databases / Ratha N. K., Karu K., Chen Sh., Jain A. K. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1996. Vol. 18, №8. P. 799–813.
ISO/IEC 19794-2. Information technology – Biometric data interchange formats – Part 2: Finger minutiae data.
ISO/IEC 19794-3. Information technology – Biometric data interchange formats – Part 3: Finger pattern spectral data.
ISO/IEC 19794-4. Information technology – Biometric data interchange formats – Part 4: Finger image data.
Privacy Enhancing Technologies for Biometric Data. 2015. URL: http://www.cs.haifa.ac.il/~orrd/PrivDay/2015/
Privacy Enhancing Technologies for Biometric Data. 2016. URL: http://www.cs.haifa.ac.il/~orrd/PrivDay/
FVC2004. Fingerprint Verification Competetion. Databases. URL: http://bias.csr.unibo.it/fvc2004/databases.asp
SourceAFIS for Java and .NET. URL: https://sourceafis.machinezoo.com/
SourceAFIS Fingerprint recognition library for .NET and experimentally for Java. URL: https://sourceforge.net/projects/sourceafis/
Rusyn B., Prudyus I., Ostap V. Fingerprint image enhancement algorithm. The Experience of Designing and Application of CAD Systems in Microeletronics. Proceedings of the 6th International Conference. CADSM. 2001. P. 193–194.
A new method of fingerprint key protection of grid credential / Varetskyy Y., Rusyn B., Molga A., Ignatovych A. Advances in Intelligent and Soft Computing. 2010. Vol. 84. P. 99–103.