Mathematical and physical nature of channel capacity

  • Сергій Рассомахін V. N. Karazin Kharkiv National University
Keywords: differential entropy, channel capacity, maximum likelihood rule, uncertainty sphere, random encoding

Abstract

The classic methodological approaches to the determination of channel capacity have been considered. The contradiction between analytical and geometric definitions of maximum achievable transmission rate has been shown. Objectivity of maximum likelihood rule usage in low-quality channels with low signal/noise ratio has been analyzed. The correct formulation of the mathematical and physical content of channel capacity has been made. Invariance of capacity to a noise distribution in continuous channels has been proved. The main causes of the crisis in the development of information transmission theories have been indicated.

Downloads

Download data is not yet available.

Author Biography

Сергій Рассомахін, V. N. Karazin Kharkiv National University

Doctor of Sciences (Engineering), Full Professor, Academician of the Academy of Applied Radioelectronics Sciences

References

Kotel'nikov V. A. Teoriya potentsial'noi pomekhoustoichivosti / V. A.Kotel'nikov. – Moskva: Gosenergoizdat, 1956. – 152 s.

Shannon C. E. A Mathematical Theory of Communication / C. E. Shannon // Bell Syst. Tech . – 1948, July-October. – Vol. 27. – P. 379 – 423; 623 – 656.

Pomekhoustoichivost' i effektivnost' sistem peredachi informatsii / A. G. Zyuko, A. I. Fal'ko, I. P. Panfilov, V. L. Banket, P. V. Ivashchenko; pod red. A. G. Zyuko. – Moskva: Radio i svyaz', 1985. – 272 s.

Gallager R. Teoriya informatsii i nadezhnaya svyaz' / R. Gallager; [per. s angl.; pod red. M. S. Pinskera i B. S. Tsybakova]. − Moskva: Sov. radio, 1974. − 720 s.

Dobrushin R. L. Teoriya peredachi informatsii / R. L. Dobrushin, B. S.Tsybakov // Vestnik AN SSSR. – 1998. – № 6. – S. 76–81.

Shannon C. E. Communication in the presence of noise / C. E. Shannon // Proc. IRE. – 1949, January. – Vol. 37. – Р. 10 – 21.

Verdu S. Fifty Years of Shannon Theory / S. Verdu // IEEE Transactions on Information Theory. – 1998, October. – Vol. 44. – № 6. – P. 2057 – 2078.

Verdu S. A General Formula for Channel Capacity / S.Verdu, Te Sun Han // IEEE Transactions on Information Theory. – 1994, July. – Vol. 40. – № 4. – Р. 1147 – 1157.

Venttsel' E.S. Teoriya veroyatnostei i ee inzhenernye prilozheniya / E.S. Venttsel', L.A.Ovcharov. – Moskva: Vysshaya shkola, 2000. – 480 s.

Khemming R.V. Teoriya kodirovaniya i teoriya informatsii / R.V.Khemming; per. s angl. – Moskva: Radio i svyaz', 1983. – 176 s.

Konvei Dzh. Upakovki sharov, reshetki i gruppy / Dzh.Konvei, N.Sloen: [v 2 tomakh]. – Moskva: Mir, 1990.

Rassomakhin S.G. Tekhnologiya psevdosluchainogo kodirovaniya v setevykh kommunikatsionnykh protokolakh kanal'nogo urovnya / S. G. Rassomakhin // Systemy obrobky informacii'. – 2012. – T.2. – Vyp. 3(101). – S. 206 – 211.
Published
2017-03-26
Cited
How to Cite
Рассомахін, С. (2017). Mathematical and physical nature of channel capacity. Computer Science and Cybersecurity, (4), 5-25. Retrieved from https://periodicals.karazin.ua/cscs/article/view/8261
Section
Статті