Investigation of geometry of placement of points of pseudo-random codes in Euclidean space
Abstract
Analysis of the reasons of crisis of error-correcting coding. Grounded prospects for application of pseudorandom codes and developed their mathematical model. Considered comparative probabilistic characteristics of equal-length and normal casual codes. The evaluation of the properties of the simplest equal-length pseudo-random codes, which were received by method of the linear congruent generation. Proposed of recommendations on the choice of parameters of linear congruent generators code symbols.
Downloads
References
Shannon C.E. A Mathematical Theory of Communication / Shannon C. E. // Bell Syst. Tech. J., Julay-Oct. 1948. – Vol. 27. – P. 379–423, 623–656. (In English)
Shannon C.E. Communication in the presence of noise / Shannon C. E. // Proc. IRE., Jan. 1949. – Vol. 37. – P. 10–21. (In English)
Hehmming R.V. Teoriya kodirovaniya i teoriya informacii: Per. s angl. – M.: Radio i svyaz', 1983. – 176 s. (In Russian)
Shulman N. Random Coding Techniques for Nonrandom Codes / Shulman N. // IEEE Trans. Inf. Theory, Sep. 1999. – Vol. 45, №
– P. 2101 – 2104. (In English)
Flejshman B.S. Konstruktivnye metody optimal'nogo kodirovaniya dlya kanalov s shumami. – M.: Izd. AN SSSR, 1963. – 224. (In Russian)
Rassomahin S.G. Linejnoe celochislennoe dekodirovanie psevdosluchajnyh kodov na osnove metoda otsechenij Gomori / Rassomahin S.G. // Sistemi obrobki іnformacії. – 2011. – Vip. 5 (95). – S. 93–98. (In Russian)