The concept of processing integer data represented in the system of residue classes

  • Viktor Krasnobayev V. N. Karazin Kharkiv National University
  • Sergey Koshman Kharkiv Petro Vasylenko National Technical University of Agriculture
  • Artem Moskalenko Poltava Institute of Business Academician Yuri Bugay International Science and Technical University
Keywords: residual classes system, modular arithmetic, positional numeral systems, complete system of the smallest non-negative residues, computer system and a data processing means witch represented in integer form, residual classes

Abstract

The coding of residues number witch submitted the appropriate modules of residual classes system (RCS), made with data from complete system of the smallest non-negative residues (CSSNR) was show in the article. In this aspect, CSSNR is the basis for the construction of non-positional code structure in RCS. Possible field of science and engineering, where there is an urgent need for fast, reliable, and high-precision integer calculations were clarified and systematized in the paper. On the basis of studies of the properties of RCS were examined the advantages and disadvantages of using modular arithmetic (MA). Using the results of the analysis of problems of integer data and a set of positive attributes of MA, the classes of problems and algorithms, which using RCS, much more efficient binary positional numeral systems were defined in the article.

Downloads

Download data is not yet available.

Author Biographies

Viktor Krasnobayev, V. N. Karazin Kharkiv National University

Doctor of Sciences (Engineering), Full Professor, Honourable Inventor of Ukraine, Honourable Radio Specialist of the USSR

Sergey Koshman, Kharkiv Petro Vasylenko National Technical University of Agriculture

Ph.D., Associate professor

Artem Moskalenko, Poltava Institute of Business Academician Yuri Bugay International Science and Technical University

Ph.D., Associate professor

References

Akushskii I. Ya. Mashinnaya arifmetika v ostatochnykh klassakh / I. Ya. Akushskii, D. I. Yuditskii. – Moskva: Sov. radio, 1968. – 440 s.

Siora A. A. Otkazoustoichivye sistemy s versionno-informatsionnoi izbytochnost'yu v ASU TP: monografiya / A. A. Siora, V. A. Krasnobaev, V. S. Kharchenko. – Khar'kov: MON, NAU im. N. E. Zhukovskogo (KhAI), 2009. – 320 s.

Morgado M. Modular arithmetic [Electronic Resource] / Matthew Morgado. – Way of access: http://math.uchicago.edu/~may/REU2014/REUPapers/Morgado.pdf. - Title from the screen.

Stewart I. Concepts of Modern Mathematics / Ian Stewart. – Dover Publications: Amazon Digital Services, Inc, 2012. – 352 p.

Lance S. A survey of primality tests [Electronic Resource] / Stefan Lance. – Way of access: http://math.uchicago.edu/~may/REU2014/REUPapers/Lance.pdf. – August 27, 2014. - Title from the screen.

Krasnobaev V. A. Osnovnye svoistva nepozitsionnoi sistemy schisleniya / V. A. Krasnobaev, S. V. Somov, A. S. Yanko // Systemy upravlinnja, navigacii' ta zv’jazku. – 2013. – Vyp. 1 (25). – S. 110–113.

Grandini D. Notes on Modular Arithmetic [Electronic Resource] / Daniele Grandini. – Way of access: http://math.unm.edu/~daniele/Notes%20on%20 Modular%20Arithmetic.pdf. – Spring 2013. - Title from the screen.

Krasnobaev V. A. Metod ispravleniya odnokratnykh oshibok dannykh, predstavlennykh kodom klassa vychetov / V. A. Krasnobaev, S. A. Koshman, M. A. Mavrina // Elektronnoe modelirovanie. – 2013. – T. 35. – № 5. – S. 43–56.

Barsov V. I. Metodologiya parallel'noi obrabotki informatsii v modulyarnoi sisteme schisleniya: monografiya / V. I. Barsov, L. S. Soroka, V. A. Krasnobaev. – Khar'kov: MON, UIPA, 2009. – 268 s.

Kornilov A. I. Printsipy postroeniya spetsializirovannykh vychislitelei s primeneniem modulyarnoi arifmetiki / A. I. Kornilov, M. Yu. Semenov, O. V. Lastochkin, V. S. Kalashnikov // Institut problem proektirovaniya v mikroelektronike RAN. – 2010. – S. 346–355.

Krasnobayev V. A. A method for increasing the reliability of verification of data represented in a residue number system / V. A. Krasnobayev, S. A. Koshman, M. A. Mavrina // Cybernetics and Systems Analysis. – 2014. – Vol. 50. – Issue 6. – Р. 969–976.
Published
2017-12-21
Cited
How to Cite
Krasnobayev, V., Koshman, S., & Moskalenko, A. (2017). The concept of processing integer data represented in the system of residue classes. Computer Science and Cybersecurity, (3), 22-32. Retrieved from https://periodicals.karazin.ua/cscs/article/view/10002
Section
Статті