The concept of processing integer data represented in the system of residue classes
Abstract
The coding of residues number witch submitted the appropriate modules of residual classes system (RCS), made with data from complete system of the smallest non-negative residues (CSSNR) was show in the article. In this aspect, CSSNR is the basis for the construction of non-positional code structure in RCS. Possible field of science and engineering, where there is an urgent need for fast, reliable, and high-precision integer calculations were clarified and systematized in the paper. On the basis of studies of the properties of RCS were examined the advantages and disadvantages of using modular arithmetic (MA). Using the results of the analysis of problems of integer data and a set of positive attributes of MA, the classes of problems and algorithms, which using RCS, much more efficient binary positional numeral systems were defined in the article.
Downloads
References
Siora A. A. Otkazoustoichivye sistemy s versionno-informatsionnoi izbytochnost'yu v ASU TP: monografiya / A. A. Siora, V. A. Krasnobaev, V. S. Kharchenko. – Khar'kov: MON, NAU im. N. E. Zhukovskogo (KhAI), 2009. – 320 s.
Morgado M. Modular arithmetic [Electronic Resource] / Matthew Morgado. – Way of access: http://math.uchicago.edu/~may/REU2014/REUPapers/Morgado.pdf. - Title from the screen.
Stewart I. Concepts of Modern Mathematics / Ian Stewart. – Dover Publications: Amazon Digital Services, Inc, 2012. – 352 p.
Lance S. A survey of primality tests [Electronic Resource] / Stefan Lance. – Way of access: http://math.uchicago.edu/~may/REU2014/REUPapers/Lance.pdf. – August 27, 2014. - Title from the screen.
Krasnobaev V. A. Osnovnye svoistva nepozitsionnoi sistemy schisleniya / V. A. Krasnobaev, S. V. Somov, A. S. Yanko // Systemy upravlinnja, navigacii' ta zv’jazku. – 2013. – Vyp. 1 (25). – S. 110–113.
Grandini D. Notes on Modular Arithmetic [Electronic Resource] / Daniele Grandini. – Way of access: http://math.unm.edu/~daniele/Notes%20on%20 Modular%20Arithmetic.pdf. – Spring 2013. - Title from the screen.
Krasnobaev V. A. Metod ispravleniya odnokratnykh oshibok dannykh, predstavlennykh kodom klassa vychetov / V. A. Krasnobaev, S. A. Koshman, M. A. Mavrina // Elektronnoe modelirovanie. – 2013. – T. 35. – № 5. – S. 43–56.
Barsov V. I. Metodologiya parallel'noi obrabotki informatsii v modulyarnoi sisteme schisleniya: monografiya / V. I. Barsov, L. S. Soroka, V. A. Krasnobaev. – Khar'kov: MON, UIPA, 2009. – 268 s.
Kornilov A. I. Printsipy postroeniya spetsializirovannykh vychislitelei s primeneniem modulyarnoi arifmetiki / A. I. Kornilov, M. Yu. Semenov, O. V. Lastochkin, V. S. Kalashnikov // Institut problem proektirovaniya v mikroelektronike RAN. – 2010. – S. 346–355.
Krasnobayev V. A. A method for increasing the reliability of verification of data represented in a residue number system / V. A. Krasnobayev, S. A. Koshman, M. A. Mavrina // Cybernetics and Systems Analysis. – 2014. – Vol. 50. – Issue 6. – Р. 969–976.