Colloidal Behavior of Oxidized and Lysozyme-Coated Single-Walled Carbon Nanotubes. Analysis via Dynamic and Electrophoretic Light Scattering
Abstract
The concept of surface oxidation or noncovalent coating of carbon nanotubes for successful application in aqueous fluids has a cost in terms of pollution, fate, and toxicity. Co-existing components in vitro or in vivo can influence the nanotube colloidal behavior and affect their transport. In this work, the interaction of oxidized single-walled carbon nanotubes with CsI and Sr(NO3)2 and the effect of lysozyme on the colloidal behavior of these nanotubes in aqueous systems are examined using dynamic and electrophoretic light scattering.
The concentration regimes of CsI and Sr(NO3)2 that determine the colloidal stability and instability of oxidized single-walled carbon nanotubes were identified. Oxidizing of the nanotube surface enhances colloidal stability to CsI and adsorption of Sr2+ cations by decorating the surface with COOH groups. Selective binding of metal cations and large specific surface area favor the removal of heavy and radioactive metals in cationic form from the bulk phase.
Biological and medical applications contribute to the fact that the interactions of carbon nanotubes with lysozyme are the object of several works. Covalent and noncovalent decoration by the enzyme creates a combination of electrical, mechanical, thermal, and optical properties of carbon nanotubes with inherent antibacterial activity of lysozyme. For example, Horn et al. reported antimicrobial fibers with four times the toughness of spider silk. However, to the best of our knowledge, little is known about colloidal stability and interaction with ions of protein-coated carbon nanotubes.
Downloads
References
Kim M., Goerzen, D., Jena, P. V., Zeng, E., Pasquali, M., Meidl, R. A., Heller, D. A. Human and environmental safety of carbon nanotubes across their life cycle. Nat. Rev. Mater. 2024, 9(1), 63-81. https://doi.org/10.1038/s41578-024-00670-5
Drew R., Frangos, J., Hagen, T. Engineered nanomaterials: a review of the toxicology and health hazards. In Safe Work Australia, 2009.
Yuan X., Zhang, X., Sun, L., Wei, Y., Wei, X. Cellular toxicity and immunological effects of carbon-based nanomaterials. Part. Fibre Toxicol. 2019, 16, 1-27. https://doi.org/10.1186/s12989-019-0299-z
Zhang C., Wu, L., de Perrot, M., Zhao, X. Carbon nanotubes: a summary of beneficial and dangerous aspects of an increasingly popular group of nanomaterials. Front. Oncol. 2021, 11, 693814. https://doi.org/10.3389/fonc.2021.693814
Zhao J., Wang, Z., White, J. C., Xing, B. Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ. Sci. Technol. 2014, 48(17), 9995-10009. https://doi.org/10.1021/es5022679
Avant B., Bouchard, D., Chang, X., Hsieh, H.-S., Acrey, B., Han, Y., Spear, J., Zepp, R., Knightes, C. D. Environmental fate of multiwalled carbon nanotubes and graphene oxide across different aquatic ecosystems. NanoImpact. 2019, 13, 1-12. https://doi.org/10.1016/j.impact.2018.11.001
Birch M. E., Ruda-Eberenz, T. A., Chai, M., Andrews, R., Hatfield, R. L. Properties that influence the specific surface areas of carbon nanotubes and nanofibers. J. Occup. Hyg. 2013, 57(9), 1148-1166. https://doi.org/10.1093/annhyg/met042
Pashley R. M., Karaman, M. E. Applied colloid and surface chemistry. John Wiley & Sons: New York, 2021.
Laguta A., Mchedlov-Petrossyan, N., Kovalenko, S., Voloshina, T., Haidar, V., Filatov, D. Y., Trostyanko, P., Karbivski, V., Bogatyrenko, S., Xu, L. Stability of aqueous suspensions of COOH-decorated carbon nanotubes to organic solvents, esterification, and decarboxylation. J. Phys. Chem. Lett. 2022, 13(43), 10126-10131. https://doi.org/10.3390/liquids2030013
Anitha K., Namsani, S., Singh, J. K. Removal of heavy metal ions using a functionalized single-walled carbon nanotube: a molecular dynamics study. J. Phys. Chem. A 2015, 119(30), 8349-8358. https://doi.org/10.1021/acs.jpca.5b03352
Kryshtal A., Mchedlov-Petrossyan, N., Laguta, A., Kriklya, N., Kruk, A., Osawa, E. Primary detonation nanodiamond particles: Their core-shell structure and the behavior in organo-hydrosols. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 614, 126079. https://doi.org/10.1016/j.colsurfa.2020.126079
Laguta A. N., Mchedlov-Petrossyan, N. O., Bogatyrenko, S. I., Kovalenko, S. M., Bunyatyan, N. D., Trostianko, P. V., Karbivskii, V. L., Filatov, D. Y. Interaction of aqueous suspensions of single-walled oxidized carbon nanotubes with inorganic and organic electrolytes. J. Mol. Liq. 2022, 347, 117948. https://doi.org/10.1016/j.molliq.2021.117948
Mchedlov-Petrossyan N. O., Kriklya, N. N., Laguta, A. N., Ōsawa, E. Stability of detonation nanodiamond colloid with respect to inorganic electrolytes and anionic surfactants and solvation of the particles surface in DMSO–H2O organo-hydrosols. Liquids. 2022, 2(3), 196-209. https://doi.org/10.3390/liquids2030013
Johnson L. N. The structure and function of lysozyme. Sci. Prog. 1966, 367-385.
Horn D. W., Tracy, K., Easley, C. J., Davis, V. A. Lysozyme dispersed single-walled carbon nanotubes: interaction and activity. J. Phys. Chem. C 2012, 116(18), 10341-10348. https://doi.org/10.1021/jp300242a
Horn D. W., Ao, G., Maugey, M., Zakri, C., Poulin, P., Davis, V. A. Dispersion state and fiber toughness: antibacterial lysozyme‐single walled carbon nanotubes. Adv. Funct. Mater. 2013, 23(48), 6082-6090. https://doi.org/10.1002/adfm.201300221
Borzooeian Z., Safavi, A., Hossain Sheikhi, M., Aminlari, M., Mahdi Doroodmand, M. Preparation and investigation on properties of lysozyme chemically bonded to single-walled carbon nanotubes. J. Exp. Nanosci. 2010, 5(6), 536-547. https://doi.org/10.1080/17458081003699122
Noor M. M., Goswami, J., Davis, V. A. Comparison of attachment and antibacterial activity of covalent and noncovalent lysozyme-functionalized single-walled carbon nanotubes. ACS Omega 2020, 5(5), 2254-2259. https://doi.org/10.1021/acsomega.9b03387
Piao L., Liu, Q., Li, Y. Interaction of amino acids and single-wall carbon nanotubes. J. Phys. Chem. C 2012, 116(2), 1724-1731. https://doi.org/10.1021/jp2085318
Du P., Zhao, J., Mashayekhi, H., Xing, B. Adsorption of bovine serum albumin and lysozyme on functionalized carbon nanotubes. J. Phys. Chem. C 2014, 118(38), 22249-22257. https://doi.org/10.1021/jp5044943
Taghavi M., Zazouli, M. A., Yousefi, Z., Akbari-adergani, B. Kinetic and isotherm modeling of Cd (II) adsorption by l-cysteine functionalized multi-walled carbon nanotubes as adsorbent. Environ. Monit. Assess. 2015, 187(11), 682. https://doi.org/10.1007/s10661-015-4911-x
Zhytniakivska O., Tarabara, U., Vus, K., Trusova, V., Gorbenko, G. Molecular docking study of protein-functionalized carbon nanomaterials for heavy metal detection and removal. East Eur. J. Phys. 2024, (3), 484-490. https://doi.org/10.26565/2312-4334-2024-3-59
Jeong S. H., Kim, K. K., Jeong, S. J., An, K. H., Lee, S. H., Lee, Y. H. Optical absorption spectroscopy for determining carbon nanotube concentration in solution. Synth. Met. 2007, 157(13), 570-574. https://doi.org/10.1016/j.synthmet.2007.06.012
Hazel F. Effects of electrolytes in hydrophobic systems. I. Electric mobility and stability. J. Phys. Chem. 1941, 45(5), 731-738. https://doi.org/10.1021/j150410a002
Delgado Á. V., González-Caballero, F., Hunter, R., Koopal, L., Lyklema, J. Measurement and interpretation of electrokinetic phenomena. J. Colloid Interface Sci. 2007, 309(2), 194-224. https://doi.org/10.1016/j.jcis.2006.12.075
Fuchs N. Über die stabilität und aufladung der aerosole. Z. Phys. 1934, 89(11), 736-743. https://doi.org/10.1007/BF01341386
Deline A. R., Frank, B. P., Smith, C. L., Sigmon, L. R., Wallace, A. N., Gallagher, M. J., Goodwin Jr, D. G., Durkin, D. P., Fairbrother, D. H. Influence of oxygen-containing functional groups on the environmental properties, transformations, and toxicity of carbon nanotubes. Chem. Rev. 2020, 120(20), 11651-11697. https://doi.org/10.1021/acs.chemrev.0c00351
Myers D. Surfaces, interfaces, and colloids. Wiley: New York, 1999; Vol. 415.
Churaev N. V., Derjaguin, B. V. Inclusion of structural forces in the theory of stability of colloids and films. J. Colloid Interface Sci. 1985, 103(2), 542-553. https://doi.org/10.1016/0021-9797(85)90129-8
Maeno Y., Ishikawa, A., Nakayama, Y. Adhesive behavior of single carbon nanotubes. Appl. Phys. Express. 2010, 3(6), 065102. https://doi.org/10.1143/APEX.3.065102
Akita S., Nishijima, H., Nakayama, Y. Influence of stiffness of carbon-nanotube probes in atomic forcemicroscopy. J. Phys. D: Appl. Phys. 2000, 33(21), 2673. https://doi.org/10.1088/0022-3727/33/21/301
Israelachvili J. N. Intermolecular and surface forces. Academic press: 2011.
Powis F. LXII.-The coagulation of colloidal arsenious sulphide by electrolytes, and its relation to the potential difference at the surface of the particles. J. Chem. Soc., Trans. 1916, 109, 734-744. https://doi.org/10.1039/CT9160900734
Liu X.-C., Skibsted, L. H. Strontium increasing calcium accessibility from calcium citrate. Food Chem. 2022, 367, 130674. https://doi.org/10.1016/j.foodchem.2021.130674
Papachristodoulou C. A., Assimakopoulos, P. A., Gangas, N. H. J. Strontium adsorption properties of an aluminum-pillared montmorillonite carrying carboxylate functional groups. J. Colloid Interface Sci. 2002, 245(1), 32-39. https://doi.org/10.1006/jcis.2001.7988
Ibáñez R., Almécija, M. C., Guadix, A., Guadix, E. M. Dynamics of the ceramic ultrafiltration of model proteins with different isoelectric point: comparison of β-lactoglobulin and lysozyme. Sep. Purif. Technol. 2007, 57(2), 314-320. https://doi.org/10.1016/j.seppur.2007.05.001
Tomita S., Yoshikawa, H., Shiraki, K. Arginine controls heat‐induced cluster–cluster aggregation of lysozyme at around the isoelectric point. Biopolymers 2011, 95(10), 695-701. https://doi.org/10.1002/bip.21637
Nikfarjam S., Ghorbani, M., Adhikari, S., Karlsson, A., Jouravleva, E., Woehl, T., Anisimov, M. Irreversible nature of mesoscopic aggregates in lysozyme solutions. Colloid J. 2019, 81, 546-554. https://doi.org/10.1134/S1061933X19050090
Poznański J., Szymaǹski, J., Basiǹska, T., Słomkowski, S., Zielenkiewicz, W. Aggregation of aqueous lysozyme solutions followed by dynamic light scattering and 1H NMR spectroscopy. J. Mol. Liq. 2005, 121(1), 21-26. https://doi.org/10.1016/j.molliq.2004.08.022
Bomboi F., Tardani, F., Gazzoli, D., Bonincontro, A., La Mesa, C. Lysozyme binds onto functionalized carbon nanotubes. Colloids Surf. B: Biointerfaces. 2013, 108, 16-22. https://doi.org/10.1016/j.colsurfb.2013.02.034
Siepi M., Donadio, G., Dardano, P., De Stefano, L., Monti, D. M., Notomista, E. Denatured lysozyme-coated carbon nanotubes: A versatile biohybrid material. Sci. Rep. 2019, 9(1), 16643. https://doi.org/10.1038/s41598-019-52701-9
Bomboi F., Bonincontro, A., La Mesa, C., Tardani, F. Interactions between single-walled carbon nanotubes and lysozyme. J. Colloid Interface Sci. 2011, 355(2), 342-347. https://doi.org/10.1016/j.jcis.2010.12.026
Smith S. C., Ahmed, F., Gutierrez, K. M., Rodrigues, D. F. A comparative study of lysozyme adsorption with graphene, graphene oxide, and single-walled carbon nanotubes: Potential environmental applications. J. Chem. Eng. 2014, 240, 147-154. https://doi.org/10.1016/j.cej.2013.11.030
Cao J., Pham, D., Tonge, L., Nicolau, D. Predicting surface properties of proteins on the Connolly molecular surface. Smart Mater. Struct. 2002, 11(5), 772. https://doi.org/10.1088/0964-1726/11/5/323
Blake C., Koenig, D., Mair, G., North, A., Phillips, D., Sarma, V. Structure of hen egg-white lysozyme: a three-dimensional Fourier synthesis at 2 Å resolution. Nature. 1965, 206(4986), 757-761. https://doi.org/10.1038/206757a0