Methods of Protection/Deprotection of Hydroxy Groups in the Synthesis of Polyhydroxy Flavonols
Abstract
The article represents a review of methods for obtaining polyhydroxy flavonols without protection of hydroxy groups, as well as syntheses using methylation, alkylation and benzylation of the initial reagents and, accordingly, demethylation, dealkylation and debenzylation of the final flavonols. It is shown that the most convenient for the synthesis of natural polyhydroxy flavonols and their analogues is the debenzylation reaction using a
Pd/C catalyst in tetrahydrofuran, which allows to obtain flavonols containing both hydroxy and methoxy groups. Syntheses using benzylation/debenzylation reactions are easily scaled up, which allows to obtain of large quantities of polyhydroxy flavonols, in addition, the latter do not contain impurities of hydrogen halides, which makes it possible to use the obtained flavonols in the pharmaceutical and food industries.
The syntheses of hydroxy flavonols with a pyrogallol-like structure of the side phenyl ring were carried out, and the natural flavonol fisetin, a promising medicinal product and component of food additives, was obtained through benzylation/debenzylation reactions. effect of ensitrelvir are found in the 1-methyl-1H-1,2,4-triazole and 6-chloro-2-methyl-2H-indazole fragments.
Downloads
References
Hao, B.; Yang, Zh.; Liu, H.; Liu, Yu; Wang Sh. Advances in Flavonoid Research: Sources, Biological Activities, and Developmental Prospectives. Current Issues in Molecular Biology. 2024, 46(4), 2884-2925. https://doi.org/10.3390/cimb46040181
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. Journal of Nutritional Science. 2016, 5, art.num e47. https://doi.org/10.1017/jns.2016.41
Roshal, A.D. Complexation of flavonoids: Spectral phenomena, regioselectivity, interplay with charge and proton transfer. The Chemical Record. 2024, 4 (2), art. num. e202300249. https://doi.org/10.1002/tcr.202300249
Demidov, O.O.; Krasnopyorova, A.V.; Yukhno, G.D.; Efimova, N.V.; Roshal, A.D. Flavonol assisted extraction of divalent and trivalent metal ions. Functional Materials. 2024, 31(4), 601–608, https://doi.org/10.15407/fm31.04.601
Roshal, A.D.; Organero, J.A.; Douhal, A. Tuning the mechanism of proton-transfer in a hydroxyflavone derivative. Chemical Physics Letters, 2003, 379, 53-59. https://doi.org/10.1016/j.cplett.2003.08.008
Yang, D.; Wang, T.; Long, M.; Li, P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxidative Medicine and Cellular Longevity, 2020, art. num. 2020:8825387. https://doi.org/10.1155/2020/8825387
Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharmaceutical Journal, 2016, 25(2), 149–164. https://doi.org/10.1016/j.jsps.2016.04.025
Elwan, A.H.; El-Masry, S.M.; Habib, D.A.; Zewail, M. An insight into fisetin, the miraculous multifaceted flavonol: Paving the road for enhanced delivery through promising pharmaceutical nano-formulations. Journal of Drug Delivery Science and Technology, 2024, 101 (Part B), art. num. 106292, https://doi.org/10.1016/j.jddst.2024.106292
Algar, J.; Flynn, J.P. A New Method for the Synthesis of Flavonols. Proceedings of the Royal Irish Academy. Section B: Biological, Geological, and Chemical Science. 1934, XLII, 1-8
Oyamada, T.J. A new general method for the synthesis of the derivatives of flavonol. Bulletin of the Chemical Society of Japan, 1934, 55, 1256–1261. https://doi.org/10.1246/bcsj.10.182
Ma, M.-L.; Li, M.; Gou, J.-J.; Ruan, T.-Y.; et al. Design, synthesis and biological activity of flavonoid derivatives as selective agonists for neuromedin U 2 receptor. Bioorganic & Medicinal Chemistry. 2014, 22(21), 6117–6123. https://doi.org/10.1016/j.bmc.2014.08.038
Ferrari, G.V.; Pappano, N.B.; Montaña, M.P.; Garcıa, N.A.; Debattista, N.B. Synthesis of 3,3′-Dihydroxyflavone and Apparent Formation Constants of Flavonoid−Ga(III) Complexes. Journal of Chemical & Engineering Data, 2010, 55(9), 3080–3083. https://doi.org/10.1021/je901091f
Gunduz, S.; Goren, A.C.; Ozturk T. Facile Syntheses of 3-Hydroxyflavones. Organic Letters. 2012, 14(6), 1576–1579. https://doi.org/10.1021/ol300310e
Sobottka, A.M.; Werner, W.; Blaschke, G.; Kiefer, W.; et al. Effect of Flavonol Derivatives on the Carrageenin-Induced Paw Edema in the Rat and Inhibition of Cyclooxygenase-1 and 5-Lipoxygenase in Vitro. Archiv der Pharmazie. 2020, 333 (7), 205–210 https://doi.org/10.1002/1521-4184(20007)333:7<205::aid-ardp205>3.0.co;2-y
Shaw, B.L.; Simpson, T.H. Chelate systems. Part II. Journal of the Chemical Society 1952, 5027–5032. https://doi.org/10.1039/jr9520005027
Gupta, S.R.; Seshadri T.R. Survey of anthoxanthins. Part VI. Colouring matter of tamarix troupii. Constitution of the aglycone and its synthesis. Journal of the Chemical Society. 1954, 3063–3065. https://doi.org/10.1039/jr9540003063
Ahluwalia, V.K.; Seshadri T.R. Synthetic experiments in the benzopyrone series. Proceedings of the Indian Academy of Sciences – Section A. 1954, 39 (6), 296–300. https://doi.org/10.1007/bf03048703
Sagareishvili, T.G.; Alaniya, M.D.; Tsitsishvili, V.G.; Kemertelidze, E.P. Micranthoside – A new glycoside from Eupatorium micranthum. Chemistry of Natural Compounds. 1981, 17, 225–230. https://doi.org/10.1007/BF00568507
Shih, T.-L.; Chou, C.-E.; Liao, W.-Y.; Hsiao C.-A. Copper-mediated trimethylsilyl azide in amination of bromoflavonoids to synthesize unique aminoflavonoids. Tetrahedron. 2014, 70 (23), 3657–3664, https://doi.org/10.1016/j.tet.2014.04.022
Lindel, Th.; Mende S. Synthesis of morin and morin derivatives. US Patent 2020/0308131 A1, 2020, C07D 311/28
Sousa, J.L.C.; Proença, C.; Freitas, M.; Fernandes, E.; Silva, A.M.S. New polyhydroxylated flavon-3-ols and 3-hydroxy-2-styrylchromones: synthesis and ROS/RNS scavenging activities. European Journal of Medicinal Chemistry. 2016, 119, 250–259. https://doi.org/10.1016/j.ejmech.2016.04.057
Ahn, M.; Park, S.E.; Choi, J.; Choi, J. et al. Synthesis and biological evaluation of flavonoid-based IP6K2 inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2023, 38 (1), art.# 2193866, https://doi.org/10.1080/14756366.2023.2193866
Qin, C.X.; Chen, X.; Hughes, R.A.; Williams, S.J.; Woodman, O.L. Understanding the Cardioprotective Effects of Flavonols: Discovery of Relaxant Flavonols without Antioxidant Activity. Journal of Medicinal Chemistry. 2008, 51 (6), 1874–1884. https://doi.org/10.1021/jm070352h
Serdiuk, I.E.; Roshal, A.D.; Błażejowski, J. Origin of Spectral Features and Acid–Base Properties of 3,7-Dihydroxyflavone and Its Monofunctional Derivatives in the Ground and Excited States. The Journal of Physical Chemistry A. 2016, 120 (25), 4325–4337. https://doi.org/10.1021/acs.jpca.6b03290
Ranga Rao, R.; Tiwari, A. K.; Prabhakar Reddy, P.; Suresh Babu, K.; et al. Synthesis of antihyperglycemic, α-glucosidase inhibitory, and DPPH free radical scavenging furanochalcones. Medicinal Chemistry Research. 2011, 21 (6), 760–774. https://doi.org/10.1007/s00044-011-9583-7
Venkateswararao, E.; Son, M.-J.; Sharma, N.; Manickam, M.; et al. Exploration of Pharmacophore in Chrysosplenol C as Activator in Ventricular Myocyte Contraction. ACS Medicinal Chemistry Letters. 2015, 6 (7), 758–763 https://doi.org/10.1021/acsmedchemlett.5b00043
Yap, S.; Woodman, O. L.; Crack, P. J.; Williams, S. J. Synthesis of a hypoxia-targeted conjugate of the cardioprotective agent 3′,4′-dihydroxyflavonol and evaluation of its ability to reduce ischaemia/reperfusion injury. Bioorganic & Medicinal Chemistry Letters. 2011, 21 (17), 5102–5106. https://doi.org/10.1016/j.bmcl.2011.03.040
Xie, J.; Xu, H.; Zhang, Q.; Wu, Z.; et al. Semi‐Synthesis of Flavonoid Glycosides and Their Anti‐Inflammatory and Antitumor Activities towards Triple Negative Breast Cancer. Chemistry & Biodiversity. 2023, 20 (2), art. num e202200899. https://doi.org/10.1002/cbdv.202200899
Jian, J.; Fan, J.; Yang, H.; Lan, P.; et al. Total Synthesis of the Flavonoid Natural Product Houttuynoid A. Journal of Natural Products. 2018, 81 (2), 371–377. https://doi.org/10.1021/acs.jnatprod.7b00791
Docampo-Palacios, M. L.; Alvarez-Hernández, A.; Adiji, O.; Gamiotea-Turro, D.; Valerino-Diaz, A. B.; et al. Glucuronidation of Methylated Quercetin Derivatives: Chemical and Biochemical Approaches. Journal of Agricultural and Food Chemistry. 2020, 68 (50), 14790–14807. https://doi.org/10.1021/acs.jafc.0c04500
Jian, J.; Fan, J.; Yang, H.; Lan, P.; et al. Total Synthesis of the Flavonoid Natural Product Houttuynoid A. Journal of Natural Products. 2018, 81 (2), 371–377. https://doi.org/10.1021/acs.jnatprod.7b00791
Kim, S.; Li, Y.; Lin, L.; Sayasith, P. R.; et al. Synthesis and Biological Evaluation of 4′-Substituted Kaempfer-3-ols. The Journal of Organic Chemistry. 2020, 85 (6), 4279–4288. https://doi.org/10.1021/acs.joc.9b03461
Horie, T.; Tsukayama, M.; Kawamura, Y.; Seno, M.; et al. Studies of the Selective O-Alkylation and Dealkylation of Flavonoids. XI. A New Convenient Method for Synthesizing 3,5,7-Trihydroxy-8-methoxyflavones from 7-Hydroxy-3,5,8-trimethoxyflavones. Bulletin of the Chemical Society of Japan. 1988, 61 (2), 441–447. https://doi.org/10.1246/bcsj.61.44
Chiruta, C.; Schubert, D.; Dargusch, R.; Maher, P. Chemical Modification of the Multitarget Neuroprotective Compound Fisetin. Journal of Medicinal Chemistry. 2011, 55 (1), 378–389. https://doi.org/10.1021/jm2012563
Mei, Q.; Wang, C.; Zhao, Z.; Yuan, W.; et al. Synthesis of icariin from kaempferol through regioselective methylation and para-Claisen–Cope rearrangement. Beilstein Journal of Organic Chemistry. 2015, 11, 1220–1225. https://doi.org/10.3762/bjoc.11.135
Nguyen, V.-S.; Shi, L.; Li, Y.; Wang, Q.-A. Total Synthesis of Icaritin via Microwave-assistance Claisen Rearrangement. Letters in Organic Chemistry. 2014, 11 (9), 677–681. https://doi.org/10.2174/157017861109140903103927
Sheng, X.; Jia, X.-Y.; Tang, F.; Wang, Y.; et al. The total synthesis of (±)-sanggenol F. Tetrahedron. 2017, 73 (25), 3485–3491. https://doi.org/10.1016/j.tet.2017.05.022
Kan, T.; Hiza, A.; Tsukaguchi, Y.; Ogawa, T.; et al. Synthetic Studies of Fisetin, Myricetin and Nobiletin Analogs and Related Probe Molecules. Heterocycles. 2014, 88 (2), 1371–1396. https://doi.org/10.3987/com-13-s(s)107
He, L.; Zhou, Z.; Fang, Z.; Jin, H.; et al. Selective Monomethylation of Quercetin. Synthesis. 2010, 23, 3980–3986. https://doi.org/10.1055/s-0030-1258310
Estévez-Sarmiento, F.; Said, M.; Brouard, I.; León, F.; et al. 3′-Hydroxy-3,4′-dimethoxyflavone blocks tubulin polymerization and is a potent apoptotic inducer in human SK-MEL-1 melanoma cells. Bioorganic & Medicinal Chemistry. 2017, 25 (21), 6060–6070. https://doi.org/10.1016/j.bmc.2017.09.043