Structure and Transport Properties of NaPF6 Solutions in Mixtures of Ethylene Carbonate with Dimethyl Carbonate for Sodium-Ion Batteries: MD Simulation
Abstract
Sodium-ion batteries (SIBs) have the potential to become new efficient electrical energy storage devices. However, at the moment, the main problem is the lack of a clear technology for their production. For the industrial production of SIBs, it is necessary to develop cathode and anode materials, as well as to choose the optimal composition of the electrolyte. For this purpose, using molecular dynamics modeling methods, we calculated the density, viscosity, electrical conductivity, and diffusion coefficients for NaPF6 systems in the binary solvent EC:DMC (15:85 wt%, 30:70 wt%, and 50:50 wt%), and their structural properties were also considered.
The structure of the solvation shell of cations and anions was studied within the framework of radial distribution functions and current coordination numbers. The results indicate a more structured solvation shell of Na+ cations than of PF6- anions.
The study of transport properties showed that the most suitable electrolytes for the production of sodium-ion batteries are systems in which EC:DMC=15:85 wt%. This is due to the fact that the electrolyte of this particular composition showed the lowest viscosity values in the region of all concentrations, as well as the highest values of electrical conductivity. The Na+ diffusion coefficients for this system also reach the highest values compared to electrolytes of other compositions, which is a convincing argument for its future use in sodium-ion batteries.
Downloads
References
Kim, T.; Song, W.; Son, D.-Y.; Ono, L. K.; Qi, Y. Lithium-ion batteries: outlook on present, future, and hybridized technologies. Journal of Materials Chemistry A 2019, 7 (7), 2942-2964. https://doi.org/10.1039/C8TA10513H
Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 years of lithium‐ion batteries. Advanced Materials 2018, 30 (33), 1800561. https://doi.org/10.1002/adma.201800561
Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-ion batteries: present and future. Chemical Society Reviews 2017, 46 (12), 3529-3614. https://doi.org/10.1039/C6CS00776G
Adelhelm, P.; Hartmann, P.; Bender, C. L.; Busche, M.; Eufinger, C.; Janek, J. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein Journal of Nanotechnology 2015, 6 (1), 1016-1055. https://doi.org/10.3762/bjnano.6.105
Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N.-S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy & Environmental Science 2013, 6 (7), 2067-2081. https://doi.org/10.1039/C3EE40811F
Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nature Reviews Materials 2018, 3 (4), 1-11. https://doi.org/10.1038/natrevmats.2018.13
Delmas, C. Sodium and sodium‐ion batteries: 50 years of research. Advanced Energy Materials 2018, 8 (17), 1703137. https://doi.org/10.1002/aenm.201703137
Ponrouch, A.; Monti, D.; Boschin, A.; Steen, B.; Johansson, P.; Palacín, M. R. Non-aqueous electrolytes for sodium-ion batteries. Journal of Materials Chemistry A 2015, 3 (1), 22-42. https://doi.org/10.1039/C4TA04428B
Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodium‐ion batteries. Advanced Energy Materials 2016, 6 (19), 1600943. https://doi.org/10.1002/aenm.201600943
Kim, S. W.; Seo, D. H.; Ma, X.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium‐ion batteries: potential alternatives to current lithium‐ion batteries. Advanced Energy Materials 2012, 2 (7), 710-721. https://doi.org/10.1002/aenm.201200026
Wang, L. P.; Yu, L.; Wang, X.; Srinivasan, M.; Xu, Z. J. Recent developments in electrode materials for sodium-ion batteries. Journal of Materials Chemistry A 2015, 3 (18), 9353-9378. https://doi.org/10.1039/C4TA06467D
Monti, D.; Jónsson, E.; Boschin, A.; Palacín, M. R.; Ponrouch, A.; Johansson, P. Towards standard electrolytes for sodium-ion batteries: physical properties, ion solvation and ion-pairing in alkyl carbonate solvents. Physical Chemistry Chemical Physics 2020, 22 (39), 22768-22777. https://doi.org/10.1039/D0CP03639K
Chayambuka, K.; Cardinaels, R.; Gering, K. L.; Raijmakers, L.; Mulder, G.; Danilov, D. L.; Notten, P. H. An experimental and modeling study of sodium-ion battery electrolytes. Journal of Power Sources 2021, 516, 230658. https://doi.org/10.1016/j.jpowsour.2021.230658
Hakim, L.; Ishii, Y.; Matsumoto, K.; Hagiwara, R.; Ohara, K.; Umebayashi, Y.; Matubayasi, N. Transport properties of ionic liquid and sodium salt mixtures for sodium-ion battery electrolytes from molecular dynamics simulation with a self-consistent atomic charge determination. The Journal of Physical Chemistry B 2020, 124 (33), 7291-7305. https://doi.org/10.1021/acs.jpcb.0c04078
Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews 2004, 104 (10), 4303-4418. https://doi.org/10.1021/cr030203g
Vignarooban, K.; Kushagra, R.; Elango, A.; Badami, P.; Mellander, B.-E.; Xu, X.; Tucker, T.; Nam, C.; Kannan, A. M. Current trends and future challenges of electrolytes for sodium-ion batteries. International Journal of Hydrogen Energy 2016, 41 (4), 2829-2846. https://doi.org/10.1016/j.ijhydene.2015.12.090
Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J.-M.; Palacín, M. R. In search of an optimized electrolyte for Na-ion batteries. Energy & Environmental Science 2012, 5 (9), 8572-8583. https://doi.org/10.1039/C2EE22258B
Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S. Safer electrolytes for lithium‐ion batteries: state of the art and perspectives. ChemSusChem 2015, 8 (13), 2154-2175. https://doi.org/10.1002/cssc.201500284
Landesfeind, J.; Hosaka, T.; Graf, M.; Kubota, K.; Komaba, S.; Gasteiger, H. A. Comparison of ionic transport properties of non-aqueous lithium and sodium hexafluorophosphate electrolytes. Journal of The Electrochemical Society 2021, 168 (4), 040538. http://dx.doi.org/10.1149/1945-7111/abf8d9
Kalugin, O.; Volobuev, M.; Kolesnik, Y. V. MDNAES: the program set for computer modelling of ion-molecular systems by using molecular dynamics method. Kharkov University Bulletin 1999, 454, 58-79.
Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. The Journal of Chemical Physics 2007, 126 (1). https://doi.org/10.1063/1.2408420
Berendsen, H. J.; Postma, J. v.; Van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics 1984, 81 (8), 3684-3690. https://doi.org/10.1063/1.448118
Haile, J. M. Molecular dynamics simulation: elementary methods; John Wiley & Sons, Inc., 1992. ISBN:978-0-471-81966-0
Haberlandt, R.; Frietzsche, S.; Peinel, G. Grundlagen und Anwendungen. Wiesbaden: Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1995, 19. https://doi.org/10.1007/978-3-322-90870-4
Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society 1996, 118 (45), 11225-11236. https://doi.org/10.1021/ja9621760
Canongia Lopes, J. N.; Deschamps, J.; Pádua, A. A. Modeling ionic liquids using a systematic all-atom force field. The Journal of Physical Chemistry B 2004, 108 (6), 2038-2047. https://doi.org/10.1021/jp0362133
Dudariev, D.; Holubenko, Y.; Jallah, R.; Kalugin, O. Microstructure and transport properties of lithium hexafluorophosphate solutions in binary mixture of dimethyl carbonate with ethylene carbonate from molecular dynamics simulation. Kharkiv University Bulletin. Chemical Series 2024, (42), 23-37. https://doi.org/10.26565/2220-637X-2024-42-03